
Measurements of the Effect of Adiabat on Shell Decompression 
in Direct-Drive Implosions on OMEGA

D. T. Michel
University of Rochester
Laboratory for Laser Energetics

1

58th Annual Meeting of the
American Physical Society
Division of Plasma Physics

San Jose, CA
31 October–4 November 2016

27 nm CH

11 atm D2

43
3!

4 
n

m

–200

–200 2000 –200 2000
x (nm)

y 
(n

m
)

–200 2000

0

200

Router

t (ns)

2.0
0

50

100

150

Router
200

250

2.4

79639

2.8

a = 3

End of laser

DR = 62!2 nm

Rinner

R(min) = 29!0.5 nm

70 ps

Beginning of
deceleration

I 
(a

rb
it

ra
ry

u
n

it
s)

RinnerRinner

y 
(n

m
)

0

–75

–75
75

0 75 –75 0 75



E25051a

Summary

A technique has been developed that shows imprint growth 
is modeled correctly in warm CH implosions

• For high-adiabat (a > 4) implosions, the measured shell thicknesses and neutron yields 
are in agreement with 1-D simulations

• For lower-adiabat (a < 4) implosions, significant shell decompression and reduced 
neutron yield are observed

• The core size was measured to decrease consistently with reducing the adiabat 
from 6.5 to 1.8

• Two-dimensional simulations with laser imprint reproduce the measured 
shell decompression

2

This platform can be used to investigate imprint mitigation 
in 60-beam implosions on OMEGA.
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During the capsule’s acceleration, Rayleigh–Taylor growth 
of the laser imprint results in large nouniformities

4

Nonuniformities increase the thickness of the shell 
but not the minimum core size.
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An experiment was performed on OMEGA to measure the shell thickness 
for various shell adiabats
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The shell adiabat varied between 1.8 and 6.5 by changing the energy of the picket.

0
0

2

4

6

8

10

12

1

Increased
adiabat

High
adiabat

Low
adiabat

t (ns)

P
 (

T
W

)

2 3



E25054a

The outer and inner surfaces of the shell are measured from self-emission 
images within !0.2 nm* and !2.0 nm, respectively
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* Self-emission shadowgraphy: 
D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012);
D. T. Michel et al., High Power Laser Science and Engineering 3, e19 (2015).

R
 (
n

m
)

t (ps)

0

50

100

150

Router

200

2400 2600

Shadow
Coronal

emission

Imaging
system

100 150

R (nm)

Router

200 250
0.0

0.4

0.8
0 0

1000

T e
 (

eV
)

2000

2

4

6

SPECT3D

I 
n

o
rm

al
iz

ed
t

 (
g

/c
m

3 )

2800 3000

1-D
simulation

I 
(a

rb
it

ra
ry

u
n

it
s)

–200

–200 2000 –200 2000
x (nm)

y 
(n

m
)

–200 2000

0

200

Router



E25055a

The outer and inner surfaces of the shell are measured from self-emission 
images within !0.2 nm and !2.0 nm, respectively

7

Hot
spot

Imaging
system

0 40

R (nm)

Rinner

80

0.7

0.8

0.9

0 0

1000

T e
 (

eV
)

2000

10

20

SPECT3DI 
n

o
rm

al
iz

ed
t

 (
g

/c
m

3 )

1-D
simulation

I 
(a

rb
it

ra
ry

u
n

it
s)

–200

–200 2000 –200 2000
x (nm)

y 
(n

m
)

–200 2000

0

200

Router

R
 (
n

m
)

t (ps)

0

50

100

150

Router

Rinner

200

2400 2600 2800 3000

y 
(n

m
)

0

–75

–75
75

0 75 –75 0 75



E25056a

The outer and inner surfaces of the shell are measured from self-emission 
images within !0.2 nm and !2.0 nm, respectively
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The core size was measured to decrease when reducing the adiabat, 
but the shell thickness increased at an adiabat less than four
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This shows that the shell decompression observed for a low adiabat 
is not caused by an error in the adiabat calculation.
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For a high adiabat (a > 4), the measured shell thickness and yield 
are in reasonable agreement with uniform 2-D DRACO simulations
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For a lower adiabat (a < 4), significant shell decompressions are observed because of 2-D/3-D effects.
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A 2-D DRACO simulation with laser imprint was performed with CBET 
and nonlocal to correctly model the Rayleigh–Taylor growth*
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 *D. T. Michel et al., Phys. Rev. Lett. 114, 155002 (2015).

The simulation included

• Nonlocal thermal-
transport model

• Cross-beam energy 
transfer (CBET) 
model

• Laser imprint up to 
the , = mode 200
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Two-dimensional DRACO simulations with laser imprint reproduced 
with all experimental observables

12

*S. X. Hu et al., accepted in Phys. Plasmas; S. X. Hu et al., JO5.00001, this conference;
D. T. Michel et al., “Measurements of the Effect of Adiabat on Shell Decompression in Direct-Drive Implosions on OMEGA,” submitted to Physical Review Letters.
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On cryogenic implosions, the effect of imprint should be less detrimental because 
the mass ablation rate of the DT is higher providing a stronger stabilization of the 
Rayleigh–Taylor instability.
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Summary/Conclusions

A technique has been developed that shows imprint growth 
is modeled correctly in warm CH implosions

• For high-adiabat (a > 4) implosions, the measured shell thicknesses and neutron yields 
are in agreement with 1-D simulations

• For lower-adiabat (a < 4) implosions, significant shell decompression and reduced 
neutron yield are observed

• The core size was measured to decrease consistently with reducing the adiabat 
from 6.5 to 1.8

• Two-dimensional simulations with laser imprint reproduce the measured 
shell decompression

This platform can be used to investigate imprint mitigation 
in 60-beam implosions on OMEGA.
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When increasing the laser imprint by turning off SSD, a significant increase 
of the shell thickness was observed for all adiabats
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This demonstrates that the laser imprint causes shell decompression.
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