Evaluation of Long-Wavelength Perturbations in OMEGA 80-Gbar Cryogenic Implosions

P.W. McKenty **University of Rochester** Laboratory for Laser Energetics

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Long-wavelength perturbations represent a significant challenge in the pursuit of 80-Gbar implosions on OMEGA

- Ignition-class, direct-drive implosions with cross-beam energy transfer (CBET) mitigation require burn-averaged hot-spot pressures (P^*) in excess of 120 Gbar
- One can compare the experimentally inferred *P** and hot-spot convergence ratio to simulations as a metric of target performance
- Simulations indicate that improving power imbalance does not significantly alter **80-Gbar target performance**
- Target offset and inner ice roughness are equivalent in reducing target performance and are critical in achieving 80 Gbar

The effect of long-wavelength perturbations on 80-Gbar performance is consistent between all LLE multidimensional codes.

Collaborators

D. Cao, A. Shvydky, T. J. B. Collins, and K. S. Anderson University of Rochester Laboratory for Laser Energetics

M. M. Marinak

Lawrence Livermore National Laboratory

Ignition-class, direct-drive (DD) implosions with CBET mitigation require burn-averaged hot-spot pressures (P*) in excess of 120 Gbar

- The hot-spot pressure in an ignition design must exceed a threshold value given by $P_{\rm th} \sim 1 / \sqrt{E_{\rm hs}}$ *
- Current OMEGA data indicates that we have achieved ~56 Gbar without any CBET mitigation**
- Scaling the OMEGA results to NIF and applying CBET mitigation techniques[†] points to a threshold pressure of ~120 Gbar for direct-drive designs
- LLE has set a milestone of achieving 100-Gbar implosions on OMEGA by 2020, with an intermediate goal of 80 Gbar in the coming years

*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014). [†]P. B. Radha et al., NO5.00005, this conference; J. A. Marozas et al., NO5.00009, this conference; J. F. Myatt et al., UI3.00004, this conference; D. H. Froula et al., UO9.00008, this conference; M. Hohenberger et al., UO9.00009, this conference; R. K. Follett et al., UO9.00010, this conference; D. H. Edgell et al., UO9.00011, this conference.

**S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).

TC13111

The 80-Gbar target design achieves a 1-D *P** value of 130 at a hot-spot convergence ratio (HSCR) of 23

TC13103

Casting the one-dimensional (1-D), *P** history with HSCR, one can construct performance regimes to evaluate perturbed capsule behavior

TC13104 ROCHESTER

6

Casting the 1-D, P* history with HSCR, one can construct target performance to evaluate perturbed capsule behavior

80-Gbar class, $P^* = 133$ Gbar

7

Sources of long-wavelength perturbations include power imbalance, target offset, and inner ice roughness

The 80-Gbar design can withstand relatively high levels of power imbalance, but is susceptible to target offset and ice roughness

Three-dimensional HYDRA calculations are in qualitative agreement with DRACO low-mode asymmetry calculations

K. S. Anderson et al., NO5.00011, this conference.

Implementing all long-wavelength peak specifications together prevents the implosion from reaching the 80-Gbar goal

Calculations indicate that improving laser power imbalance does little to affect achieving 80 Gbar

Decreasing target offset plays a significant role in target performance and provides a path to 80 Gbar

The role of ice roughness is comparable to target offset in obtaining 80-Gbar implosions on OMEGA

TC13108c ROCHESTER

The role of ice roughness is comparable to target offset in obtaining **80-Gbar implosions on OMEGA**

ROCHESTER

TC13108d

D. Cao, TO5.00012

Long-wavelength perturbations represent a significant challenge in the pursuit of 80-Gbar implosions on OMEGA

- Ignition-class, direct-drive implosions with cross-beam energy transfer (CBET) mitigation require burn-averaged hot-spot pressures (*P**) in excess of 120 Gbar
- One can compare the experimentally inferred *P** and hot-spot convergence ratio to simulations as a metric of target performance
- Simulations indicate that improving power imbalance does not significantly alter **80-Gbar target performance**
- Target offset and inner ice roughness are equivalent in reducing target performance and are critical in achieving 80 Gbar

The effect of long-wavelength perturbations on 80-Gbar performance is consistent between all LLE multidimensional codes.

