Laser-Plasma Interaction Near the Quarter-Critical Density in Direct-Drive Inertial Confinement Fusion

Linear theory of TPD Linear theory of SRS

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Summarv

The interplay between different instabilities was studied near the quartercritical density for National Ignition Facility (NIF)-relevant parameters UR

- A series of two-dimensional simulations has been performed with the particle-in-cell (PIC) code OSIRIS*
- Spectral analysis of the fields confirms the signatures of two-plasmon decay (TPD) and stimulated Raman scattering (SRS)
- SRS determines the broad feature in the frequency spectra, consistent with the NIF experimental results**
- The fast-electron generation in the simulations including both TPD and SRS is significantly lower than in TPD-only simulations

Fiche #

Recent experiments on the NIF [planar laser–plasma interaction (LPI) platform*] motivate a study of LPI near quarter-critical density at large density scale lengths and high T_{e}

- Three types of simulations in 2-D have been performed with varying polarizations
- Parameters
 - incident laser intensity $I = 8 \times 10^{14} \text{ W/cm}^2$ (plane wave)
 - density range from 0.20 to 0.27 $n_{\rm c}$ (with density scale length $L_{\rm n} = 300 \ \mu {\rm m}$)
 - temperatures $T_e = 4$ keV, $T_i = 2$ keV
 - simulation box size: 112 \times 20 μ m (laser propagates along the x axis)

*M. J. Rosenberg et al., NO5.00010, this conference.

Quasi-stationary nonlinear saturation is reached after a few picoseconds

ROCHESTER

In out-of-plane simulations, the field spectra are consistent with the signatures of SRS

TC13030

** C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).

With the laser polarization at 45° to the simulation plane, there is an interplay between TPD and SRS

* A. Simon *et al.*, Phys. Fluids <u>26</u>, 3107 (1983). ** C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids <u>17</u>, 1211 (1974).

The range of densities over which the instabilities are active has been identified

The frequency spectra in simulations are consistent with the SRS developing at densities below the quarter-critical density

The broad feature in the frequency spectra is caused by SRS.

TC13032

*W. Seka et al., UO9.00003, this conference.

The Poynting flux analysis shows the density range where the instability develops for different polarization orientations

Poynting flux in the direction of the incident laser propagation

TC13033

The distribution of fast electrons generated by the instability depends strongly on the orientation of the incident laser field

The flux of fast electrons (E > 45 keV) in the direction of the incident laser propagation

ROCHESTER

In-plane

Polarization 45°

The flux of fast electrons (in percentage of incident laser)

keV	100 keV > <i>E</i> > 50 keV
%	7.9%
)	4.2%

Summary/Conclusions

The interplay between different instabilities was studied near the quartercritical density for National Ignition Facility (NIF)-relevant parameters UR

- A series of two-dimensional simulations has been performed with the particle-in-cell (PIC) code OSIRIS*
- Spectral analysis of the fields confirms the signatures of two-plasmon decay (TPD) and stimulated Raman scattering (SRS)
- SRS determines the broad feature in the frequency spectra, consistent with the NIF experimental results**
- The fast-electron generation in the simulations including both TPD and SRS is significantly lower than in TPD-only simulations

Fiche #

LLE