Three-Dimensional Hydrodynamic Simulations of OMEGA implosions

Shape of hot spot at peak neutron production

I. V. Igumenshchev University of Rochester Laboratory for Laser Energetics

40 µm → ᡟ

58th Annual Meeting of the American Physical Society Division of Plasma Physics San Jose, CA 31 October–4 November 2016

Consistent interpretation of OMEGA direct-drive implosions indicates significant effects of large-scale asymmetries

- Several x-ray and neutron-based observations show the presence of large-scale asymmetries in direct-drive cryogenic and room-temperature OMEGA implosions
- Three-dimensional ASTER* simulations using measured low- ℓ -mode seeds reproduce these observations
- Simulations indicate that asymmetries resulting from measured target offset, beam-to-beam power imbalance, and ice-shell nonuniformities reduce the stagnation pressure by 40%

Three-dimensional simulations are essential to guide physics campaigns and engineering advancements on the OMEGA laser.

*I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

Collaborators

D. T. Michel, K. S. Anderson, E. M. Campbell, D. H. Edgell, R. Epstein, C. J. Forrest, V. Yu. Glebov, V. N. Goncharov, J. P. Knauer, F. J. Marshall, R. L. McCrory, P. B. Radha, S. P. Regan, T. C. Sangster, and C. Stoeckl

> **University of Rochester** Laboratory for Laser Energetics

> > R. C. Shah

Los Alamos National Laboratory

A. J. Schmitt, D. Fyfe, and S. Obenschain

Naval Research Laboratory

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

Direct drive requires a factor of 3 lower hot-spot pressure for ignition than indirect drive

*S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).

OMEGA cryogenic implosions are hydrodynamically scaled from NIF-scale ignition designs

TC12314g

Adiabat $\alpha = P/P_{Fermi}$ IFAR = shell radius/ shell thickness

IFAR: in-flight aspect ratio

Achieving $P_{hs} \sim P_{th}$ requires understanding and mitigating various sources of performance degradation in OMEGA implosions

D physics 人	 Uncertainties in equation of state (EOS) strongly coupled plasma shell release 	J. P. Knauer et al., NO5.00008, this confe
	 Hydrodynamic efficiency effect of cross-beam energy transfer (CBET) heat transport 	P. B. Radha e <i>t al.</i> , NO5.00005; J. A. Marozas e <i>t al.</i> , NO5.00009, this cor A. K. Davis e <i>t al.</i> , NO8.00007, this confe
1-D	 Preheat radiation from hot corona energy particles as a result of laser-plasma interactions (LPI) 	A. R. Christopherson et al., NO5.00007, t J. A. Delettrez et al., UO9.00015, this cor
	 Small-scale mix laser imprint target defects 	D. T. Michel <i>et al.</i> , TO5.00006; S. X. Hu <i>et</i> A. Shvydky <i>et al.</i> , JO5.00003, this confe S. P. Regan <i>et al.</i> , TO5.00004, this confe
	Large-scale asymmetries	This talk; K. S. Anderson et al., NO5.000 K. M. Woo et al., TO5.00015, this confere

TC13113

conference.

s conference.

onference.

007, this conference.

s conference.

łu e*t al.*, JO5.00001; onference. onference.

5.00011; nference.

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

Target asymmetry during laser drive

*D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).

Asymmetry of dense shells before stagnation

Time-resolved x-ray backlighting of cryogenic implosions ($h\nu \sim 1.9 \text{ keV}$)

C. Stoeckl, NI2.00004, this conference (invited).

Implosion asymmetry near bang time*

*R. Shah et al., GO5.00001, this conference.

Time-integrated and time-resolved x-ray imaging of hot spot

GMXI: gated monochromatic x-ray imager *F. J. Marshall and J. A. Oertel, Rev. Sci. Instrum. <u>68</u>, 735 (1997).

Directional variation of neutron data

 $\langle T_i \rangle_n$ includes the flow effect* $\langle T_i \rangle_n = T_i + 2/3 m_i V_f^2$

*T. J. Murphy, Phys. Plasmas 21, 072701 (2014).

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

Two 3-D codes are being used in LLE to simulate direct-drive (DD) implosions

HYDRA[†]

- Established inertial confinement fusion (ICF) and high-energydensity physics (HEDP) community code
- DD-relevant physics packages under development
 - nonlocal heat transport
 - noise-free 3-D ray trace for laser deposition
 - CBET
- ASTER[‡]
- Eulerian code optimized for DD implosions
- Uses simplified models for
 - heat transport (flux-limited Spitzer)
 - 3-D ray trace with CBET (spherically symmetric corona)
- Used to interpret and guide DD implosion experiments on OMEGA

K. S. Anderson *et al.*, NO5.00011, this conference.
A. Shvydky *et al.*, JO5.00003, this conference.
†M. M. Marinak *et al.*, Phys. Plasmas <u>8</u>, 2275 (2001).
‡I. V. Igumenshchev *et al.*, Phys. Plasmas <u>23</u>, 052702 (2016).

Measured sources of nonuniformity are used as input to ASTER

• Exact illumination nonuniformities on target are not well known

TC13116

TCC: target chamber center

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

Measured mode 2 from drive asymmetry is modeled well in simulations

- Room-temperature implosions
 - no ice-shell nonuniformity
 - no offset (<5 μ m)

Self-emission images at t = 2.7 ns

• Phase of mode 2 does not change in time but is different in experiment and simulations (will be addressed later)

TC13118

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

Cryogenic implosions are simulated assuming all known sources of large-scale implosion asymmetry

Included (measured) sources

- Beam overlap
- 4- μ m (±3- μ m) target offset
- Ice thickness $\pm 2 \ \mu m$ (bottom thinner)
- Beam-to-beam power variation (power history)
- Beam mispointing $(\sigma_{\rm rms} = 8.4 \ \mu {\rm m})$

P.W. McKenty et al., TO5.00011, this conference. D. Cao et al., TO5.00012, this conference. K. S. Anderson et al., NO5.00011, this conference. *S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).

Large-scale asymmetry in the implosion core causes deformation and displacement of the hot spot

Three-dimensional view of the hot spot (surface $T_i = 1$ keV) at peak neutron production Beam overlap only (YOU = 95%)All asymmetry sources (YOU = 39%) 80 µm

YOU: yield-over-uniform

Simulations accurately predict reduction in implosion performance

Experim

0.32

0.56

ent	Simulations
	0.39
	0.64

• Excessive heat losses by the hot spot

Increase of the residual kinetic energy in asymmetric implosions results in under-compression of the hot spot

TC13127

*Energies are integrated over the center volume of $R = 200 \ \mu m$

Simulations of shot 77066 reproduce the magnitude of asymmetric plasma flow in the hot spot but not directionality

TC13128 ROCHESTER

Simulations $\Delta T_i \approx 0.6 \text{ keV}$ $\Delta T_i = 0.9 \text{ keV}$

- Introduction
- Measured evidences of large-scale asymmetries
- 3-D hydrodynamic codes at LLE
- ASTER simulations of drive asymmetry in room-temperature OMEGA implosions
- Simulations of a cryogenic OMEGA implosion
- Path forward

A better understanding of the role of large-scale asymmetries in OMEGA implosions is required

- Are large-scale modes the only source of target degradation for mid- and high-adiabat implosions?
 - 1-D physics
 - small-scale mix
- What is the main source for large-scale modes?
 - ice/ablator-shell asymmetry
 - uncertainty in beam balance/pointing/timing
 - uncertainty in target positioning
- Can we better measure actual laser nonuniformities on a target?

Engineering advancements and physics campaigns are planned to improve implosion performance on OMEGA

TC13130

1-D physics

- 1-D cryo campaign*** - shell release[†] shell thickness‡ - CH/DT interface shock timing conduction zonett

*V. N. Goncharov et al., TO5.00003, this conference. **D. H. Froula et al., UO9.00008, this conference. ***R. Betti et al., PO5.00008, this conference. [†]J. P. Knauer et al., NO5.00008, this conference. ‡D. T. Michel et al., TO5.00006, this conference. ^{††}A. K. Davis et al., NO8.00007, this conference.

Consistent interpretation of OMEGA direct-drive implosions indicates significant effects of large-scale asymmetries

- Several x-ray and neutron-based observations show the presence of large-scale asymmetries in direct-drive cryogenic and room-temperature OMEGA implosions
- Three-dimensional ASTER* simulations using measured low- ℓ -mode seeds reproduce these observations
- Simulations indicate that asymmetries resulting from measured target offset, beam-to-beam power imbalance, and ice-shell nonuniformities reduce the stagnation pressure by 40%

Three-dimensional simulations are essential to guide physics campaigns and engineering advancements on the OMEGA laser.

*I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).