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Summary

DRACO simulations and experiments have indicated that laser imprint is a 
major source degrading a ≤ 3 warm-target implosion performance on OMEGA

•	 A systematic study of laser-imprint effects on warm-target implosions of different
	 a has been performed using both experiments and DRACO simulations

•	 The x-ray self-emission imaging technique enables us to measure emissions from 
both ablation front and hot spot, from which the thickness of an imploding CH shell 
can be inferred

•	 The state-of-the-art DRACO simulations use the new physics models of nonlocal 
thermal transport, cross-beam energy transfer (CBET), and first-principles

	 equation of state (EOS)

•	 Most of the measured laser-imprint features (earlier hot-spot emission, 
“decompressed” shell, and yield reduction) have been well reproduced by our 
DRACO simulations with laser imprint up to mode , = 200 
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Mitigating laser imprint is important for the success 
of direct-drive–ignition attempts.
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Laser imprint* can seed the Rayleigh–Taylor instability endangering 
the success of direct-drive–ignition attempts
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Warm CH-target implosions with different adiabats (a = 2 to 6) have been 
conducted to assess the laser-imprint effects on OMEGA
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To understand laser-imprint effects for these implosions, the state-of-the-art 
physics models, including the nonlocal thermal transport [improved Schurtz-
Nicolai-Busquet (iSNB)], cross-beam energy transfer (CBET), and first-
principles equation of state (FPEOS), are used in our DRACO simulations.
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DRACO simulations with new physics models (iSNB,* CBET,** FPEOS†) 
predicted significant distortions for low-a implosions caused by laser imprint
(up to mode , = 200) 
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The x-ray self-emission imaging technique* is used to simultaneously 
measure emissions from both corona and hot spot
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*D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).
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Earlier hot-spot emission and a thicker CH shell are consequences 
of laser-imprint–induced decompression for low-a shots
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 *D. T. Michel et al., “Measurements of the Effect of Adiabat on Shell Decompression 
in Direct-Drive Implosions on OMEGA,” submitted to Physical Review Letters.
D. T. Michel et al., TO5.00006, this conference.

DRACO simulations with laser imprint reproduced features observed in experiments.*
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DRACO simulations* with laser imprint reproduced most of the experimental 
observables (shell thickness, neutron yields, and hot-spot size)
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*S. X. Hu et al., Phys. Plasmas 23, 102701 (2016).
**SSD: smoothing by spectral dispersion

The 2-D nature of DRACO simulations has overestimated 
laser-imprint effects for the lowest-a shot (a = 2).
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Increasing the laser-imprint level (by turning off SSD) further degrades 
the target performance in experiments: thicker shell, larger hot spot, 
and less neutron yield
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Summary/Conclusions
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Mitigating laser imprint is important for the success 
of direct-drive–ignition attempts.

DRACO simulations and experiments have indicated that laser imprint is a 
major source degrading a ≤ 3 warm-target implosion performance on OMEGA

•	 A systematic study of laser-imprint effects on warm-target implosions of different
	 a has been performed using both experiments and DRACO simulations

•	 The x-ray self-emission imaging technique enables us to measure emissions from 
both ablation front and hot spot, from which the thickness of an imploding CH shell 
can be inferred

•	 The state-of-the-art DRACO simulations use the new physics models of nonlocal 
thermal transport, cross-beam energy transfer (CBET), and first-principles

	 equation of state (EOS)

•	 Most of the measured laser-imprint features (earlier hot-spot emission, 
“decompressed” shell, and yield reduction) have been well reproduced by our 
DRACO simulations with laser imprint up to mode , = 200 



Thank you
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Rayleigh–Taylor growth comparison for different adiabat shots
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Why high-a shots grow less?

14

. – .
kg

kVkL0 94 1 1 5
n

abl# #c = +

0.8

4

1.2 2.4

Time (ns)

V
ab

l (
n

m
/n

s)
5

3

2

1

1.6 2.0 0.8

2

1.2 2.4

Time (ns)
L n

 (
n

m
)

3

1

0
1.6 2.0

a = 2.0
a = 3.0
a = 4.5



E25144

Neutron-rate comparison between experiment and simulations
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