Experimental Investigation of Cross-Beam Energy Transfer Mitigation via Wavelength Detuning in Directly Driven Implosions at the National Ignition Facility

M. Hohenberger et al. **University of Rochester** Laboratory for Laser Energetics

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Summarv

We have successfully reduced energy losses from cross-beam energy transfer (CBET) via wavelength detuning in directly driven implosions at the National Ignition Facility (NIF)

- CBET is a primary energy-loss mechanism in directly driven implosions
- $\Delta\lambda$ detuning of interacting beams is the main mitigation strategy for CBET, but the NIF's current capabilities for its implementation are limited
- A hemispheric $\Delta \lambda$ in polar-direct-drive (PDD) implosions was achieved by means of NIF's wavelength capabilities between inner and outer quads
- Enhanced energy coupling is observed by means of shell trajectory, shape, and hard x-ray emission

First experimental demonstration of CBET mitigation by means of wavelength detuning in direct drive.

Collaborators

J. A. Marozas, P. W. McKenty, M. J. Rosenberg, P. B. Radha, D. Cao, J. P. Knauer, and S. P. Regan

> University of Rochester Laboratory for Laser Energetics

M. W. Bowers, J.-M. Di Nicola, G. Erbert, B. J. MacGowan, L. J. Pelz, and S. T. Yang

Lawrence Livermore National Laboratory

CBET is a main energy-loss mechanism in direct-drive inertial confinement fusion (ICF) experiments

- Wavelength detuning shifts the resonance location sufficiently to mitigate CBET*
- CBET mitigation increases with $\Delta \lambda$

TC11765d

*I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); J. A. Marozas et al., NO5.00009, this conference;

P. B. Radha et al., NO5.00005, this conference.

The current NIF can achieve hemispheric detuning using a cone-swapped PDD beam pointing in one hemisphere*

- $\Delta \lambda_{UV} = 12 \text{ Å} (\pm 6 \text{ Å})$ is required for CBET mitigation
- The current NIF can test hemispheric detuning using a north–south asymmetric beam pointing with up to $\Delta \lambda_{UV} = 4.6$ Å (±2.3 Å)

*J. A. Marozas et al., NO5.00009, this conference.

CBET mitigation with hemispheric $\Delta \lambda$ was diagnosed in directly driven implosions by means of implosion trajectory and shape

- Fe backlighter for face-on, x-ray radiography (Fe He_{α} = 6.7 keV) driven by Q16T and Q41B
- Self-emission imaging without backlighter uses all 48 quads for CH implosion

X-ray radiography data exhibit changes to the azimuthal energy absorption and an increased shell velocity in the presence of $\Delta \lambda = 4.6$ Å

Self-emission data also exhibit increased absorption around the target equator for $\Delta \lambda = 4.6$ Å

P. B. Radha et al., Phys. Plasmas 23, 056305 (2016).

Enhanced hard x-ray emission in the presence of $\Delta \lambda = 4.6$ Å is consistent with less laser energy lost as a result of CBET

The hot-electron fraction inferred through hard x-ray emission increases with $\Delta \lambda = 4.6$ Å.

Summary/Conclusions

We have successfully reduced energy losses from cross-beam energy transfer (CBET) via wavelength detuning in directly driven implosions at the National Ignition Facility (NIF)

- CBET is a primary energy-loss mechanism in directly driven implosions
- $\Delta\lambda$ detuning of interacting beams is the main mitigation strategy for CBET, but the NIF's current capabilities for its implementation are limited
- A hemispheric $\Delta \lambda$ in polar-direct-drive (PDD) implosions was achieved by means of NIF's wavelength capabilities between inner and outer quads
- Enhanced energy coupling is observed by means of shell trajectory, shape, and hard x-ray emission

First experimental demonstration of CBET mitigation by means of wavelength detuning in direct drive.

10