High-Performance Cryogenic Designs for OMEGA and the NIF

San Jose, CA 31 October-4 November 2016

Summary

Reducing cross-beam energy transfer (CBET) losses improves stability properties of ignition spherical direct-drive (SDD) designs at the National Ignition Facility (NIF)

- Hot-spot energy in direct-drive (DD) implosions is a factor of 5 or more larger than that of indirect-drive (ID) implosions
 - the required hot-spot pressure in an igniting NIF-scale DD design must exceed 120 Gbar (350 Gbar in ID)
- Without CBET mitigation, SDD designs on the NIF have in-flight aspect ratios in excess of 30
 - CBET mitigation in hydroequivalent designs on OMEGA involves reducing beam size relative to the target size* to $R_{\rm b}/R_{\rm t} = 0.75$
 - high-yield and ignition SDD designs on the NIF require both beam-size reduction and wavelength detuning**

*I. V. Igumenshchev, Phys. Plasmas 17, 122708 (2010); I. V. Igumenshchev, Cl3.00002, this conference (invited). ** J. A. Marozas et al., NO5.00009 and P. B. Radha et al., NO5.00005, this conference.

Collaborators

T. J. B. Collins, J. A. Marozas, S. P. Regan, P. B. Radha, E. M. Campbell, D. H. Froula, I. V. Igumenshchev, R. L. McCrory, J. F. Myatt, T. C. Sangster, and A. Shvydky

> University of Rochester Laboratory for Laser Energetics

The hot-spot pressure in an ignition design must exceed a threshold value

Direct-drive designs are in a less-challenging hydrodynamic regime with CR \leq 22 and P_{hs} > 120 Gbar; indirect-drive–ignition targets require CR = 30 to 40 and P_{hs} > 350 Gbar.

*S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016).

Coupling losses caused by CBET are larger on the NIF-scale targets because of longer density scale length

TC12872a ROCHESTER

CBET losses make ignition target designs too unstable during acceleration

ROCHESTER

TC13056

$V_{\rm imp} = 3.8 \times 10^7 \, {\rm cm/s}$ Full CBET, $P_a = 90$ Mbar

CR: convergence ratio

CBET reduction* and improved laser coupling have been demonstrated on OMEGA by reducing R_{beam}/R_{target}

TC13057 Kochester

of Plasma Physics, Savannah, GA, 16-20 November 2015 (Cl3.00005) (invited).

Combination of $R_b/R_t < 1$ and wavelength detuning leads to robust high-yield SDD designs on the NIF

Initial experiments on the NIF with $\Delta \lambda = \pm 2.3$ Å confirmed predicted CBET reduction.*

TC13025

*J. A. Marozas et al., NO5.00009, this conference.

Combination of $R_b/R_t < 1$ and wavelength detuning leads to robust high-yield SDD designs on the NIF

The effect of improved laser coupling on target performance will be tested using an R75 design on OMEGA with improved power balance

- The effect of CBET is smaller on OMEGA because of shorter scale lengths
- Ignition hydroequivalent OMEGA design $R_{\rm b}/R_{\rm t}$ = 0.75, IFAR = 21.8, α = 3 $V_{\rm imp} = 3.7 \times 10^7 \, {\rm cm/s}$

ROCHESTER

TC13059

"100 Gbar" illumination

*I. V. Igumenshchev et al., Phys. Plasmas 23, 052702 (2016).

Summary/Conclusions

Reducing cross-beam energy transfer (CBET) losses improves stability properties of ignition spherical direct-drive (SDD) designs at the National Ignition Facility (NIF)

- Hot-spot energy in direct-drive (DD) implosions is a factor of 5 or more larger than that of indirect-drive (ID) implosions
 - the required hot-spot pressure in an igniting NIF-scale DD design must exceed 120 Gbar (350 Gbar in ID)
- Without CBET mitigation, SDD designs on the NIF have in-flight aspect ratios in excess of 30
 - CBET mitigation in hydroequivalent designs on OMEGA involves reducing beam size relative to the target size* to $R_{\rm b}/R_{\rm t} = 0.75$
 - high-yield and ignition SDD designs on the NIF require both beam-size reduction and wavelength detuning**

*I. V. Igumenshchev, Phys. Plasmas 17, 122708 (2010); I. V. Igumenshchev, Cl3.00002, this conference (invited). ** J. A. Marozas et al., NO5.00009 and P. B. Radha et al., NO5.00005, this conference.

TC13024

