## **Neutron Measurements in Laser-Driven Magnetized Liner Inertial Fusion Experiments on OMEGA**





San Jose, CA

## Summary

# The suite of neutron diagnostics was developed for laser-driven magnetized liner inertial fusion (MagLIF) experiments on OMEGA

- Laser-driven MagLIF is being developed on OMEGA to study MagLIF scaling
- A new H15 nTOF detector was designed and fabricated to measure MagLIF yields from  $1 \times 10^7$  to  $5 \times 10^9$  and  $T_i$  from 2 to 8 keV
- The suite of neutron diagnostics measures the DD primary and DT secondary yields, ion temperature, and neutron bang time in MagLIF experiments on OMEGA







## **Collaborators**

D. H. Barnak, J. R. Davies, J. P. Knauer, C. Stoeckl, R. Betti, S. P. Regan, T. C. Sangster, and E. M. Campbell

> University of Rochester Laboratory for Laser Energetics





# MagLIF implosions on OMEGA provide a platform for studying the basic science and scalability of the concept

- A faster shot cycle allows for more shots, better statistics, and wider scans of the MagLIF parameter space
- Better diagnostic access allows for measurements that cannot be performed at the Z scale
  - magnetic-field/Nernst-effect measurements, shell trajectories
- OMEGA-scale experiments provide code validation over 1000× in energy
  - ultimately, we will have the confidence in extrapolating to ignition-scale designs



E25712



## Laser-driven MagLIF is being developed on OMEGA to study MagLIF scaling





E25713



MIFEDS: magneto-inertial fusion electrical discharge system

## Several existing and one new neutron time-of-flight (nTOF) detector were used to measure neutrons in MagLIF experiments

| Already existing nTOF detectors: |                              |            |                                     |                                     |
|----------------------------------|------------------------------|------------|-------------------------------------|-------------------------------------|
| Name                             | Scintillator                 | Shielding  | Yield range                         | <i>T</i> i yields                   |
| 1.7-m nTOF                       | 40 × 20-mm BC-422            | 50-mm Pb   | $1\times 10^7$ to $2\times 10^9$    | NA                                  |
| <b>2</b> × <b>2</b>              | 51 × 51-mm BC-404            | 12.7-mm Pb | $5\times 10^6$ to $1\times 10^9$    | NA                                  |
| 3-m nTOF                         | 38 × 25.4-mm BC-422Q         | 25.4-mm Pb | $5\times 10^8$ to $1\times 10^{10}$ | $2\times 10^9$ to $1\times 10^{10}$ |
| 5.4-m nTOF                       | $38 \times 25.4$ -mm BC-422Q | 12.7-mm Pb | $1\times 10^9$ to $1\times 10^{11}$ | $5\times10^9$ to $1\times10^{11}$   |

A new nTOF detector was needed for ion-temperature measurements in MagLIF experiments on OMEGA.









## A new H15 nTOF detector has a Photek PMT-240 and a $40 \times 10$ -mm BC-422Q scintillator shielded by 10 mm of Pb



The H15 nTOF detector assembly bolts to a H15D re-entrant tube flange and sits at 1.7 m from target chamber center (TCC).

E25715









## The H15 nTOF detector is capable of measuring T<sub>i</sub> in MagLIF shots on OMEGA



In shots on OMEGA there is a tail from neutron re-scattering and  $(n, \gamma)$ interactions in target chamber walls that was removed by the special fit.

E25716





## The H15 nTOF detector was calibrated in DD yield and ion temperature against a 3-m nTOF detector







# 4 6

## The nTOF diagnostics were used to optimize P9 3 $\omega$ preheat beam timing



Averaging measurements from several nTOF detectors allows for an increase in the yield measurement precision.







## The secondary DT yield in MagLIF experiments is measured by the 3MLARD\* detector

• The secondary neutrons are created in reactions:

 $D + D \rightarrow p (2.5 \text{ MeV}) + T (1.01 \text{ MeV})$ T (1.01 MeV) + D  $\rightarrow \alpha$  + n (11.8 to 17.1)



• The 3MLARD detector is installed on port H16B at 285 cm from TCC; it has a 17.78-cm-diam, 10-cm-thick Pilot-B scintillator coupled with an XP2020 photomultiplier tube (PMT); the 2.54-cm-thick lead plate is installed in front of the scintillator







### **3MLARD** detector

\*V. Yu. Glebov et al., Rev. Sci. Instrum. 72, 824 (2001).

## The neutron bang time was measured in MagLIF experiments by the LLE neutron bang time (NBT)\* detector



E25720 ROCHESTER

\*C. Stoeckl et al., Rev. Sci. Instrum. 73, 3796, (2002).

# The suite of neutron diagnostics was developed for laser-driven magnetized liner inertial fusion (MagLIF) experiments on OMEGA

- Laser-driven MagLIF is being developed on OMEGA to study MagLIF scaling
- A new H15 nTOF detector was designed and fabricated to measure MagLIF yields from  $1 \times 10^7$  to  $5 \times 10^9$  and  $T_i$  from 2 to 8 keV
- The suite of neutron diagnostics measures the DD primary and DT secondary yields, ion temperature, and neutron bang time in MagLIF experiments on OMEGA





