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Summary
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• CBET significantly reduces the hydrodynamic efficiency  
in direct-drive implosions

• The proposed campaigns will test the limits of linear theory 
 – large ion-acoustic waves (IAW’s) 
 – multiple IAW’s within the same volume

• These laser–plasma interaction (LPI) studies will systematically  
address why the CBET models require multipliers

• This platform will demonstrate wavelength detuning as a mitigation 
strategy in laser direct-drive OMEGA implosion conditions

The objective of these campaigns is to address the current physics 
uncertainties with cross-beam energy transfer (CBET)

Ultimately, these studies will provide confidence in our models that 
will define the requirements for a multiple wavelength OMEGA.
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CBET reduces the energy coupled to the fusion capsule  
by transferring energy from the incident light to the outgoing light

CBET reduces the direct-drive hydrodynamic efficiency on OMEGA by ~35%. 
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Target

CBET is spatially 
limited near M ~ 1

Energy is transferred
between beams by 
ion-acoustic waves 
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I. V. Igumenschev et al., Phys. Plasmas 16, 082701 (2009).
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Experiments have demonstrated that CBET  
can be mitigated in direct-drive implosions

Reduced beam spots will recover some of the energy lost to CBET but, ultimately, multiple 
wavelength beams will be required to achieve 100-Gbar hot-spot pressures on OMEGA.
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* D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012).
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An LPI platform is being implemented on OMEGA  
to study CBET in a well-characterized plasma

Thomson scattering will characterize the plasma conditions.
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• A 1-mm-diam gas-jet target will  
provide a uniform plasma

• ~20 low-energy beams will  
uniformly heat the gas jet

• The transmitted pump and seed  
beams will be well characterized

 – transmitted power
 – spectrum

+20 low-energy 
heater beams

Pump

Seed

Transmitted
beam diagnostic (TBD)
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OMEGA EP will provide a beam with >2-nm (UV)  
of wavelength tunability on OMEGA
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Requirements

• Maximum energy > 100 J/ns (100 GW)

• UV tunable wavelength range: 350.2 nm to 353.4 nm, Dm = 3.2 nm

• Beam smoothing [distributed phase plate (DPP), distributed polarization 
rotator (DPR), no smoothing by spectral dispersion (SSD)]

• Polarization rotation

• Pulse shaping will be limited to square pulses (0.1 ns to 3 ns)

UV vacuum transport

OMEGA OMEGA EP
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The two-beam tuning experiments will validate linear CBET theory  
with laser smoothing using DPP’s, DPR’s, and SSD
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Estimated conditions:
CH plasma
Te + 1.5 keV
Ti + Te/2
ne + 1020 cm–3

Pump: 250-nm diameter 
Ip = 500 J/1 ns = 1015 W/cm2

Seed: 250-nm diameter 
Ip = 5 J/1 ns = 1013 W/cm2
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Increasing the seed intensity will drive large ion-acoustic  
waves and test the limits of linear theory
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Nonlinear IAW’s

+20 low-energy 
heater beams
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Estimated conditions:
CH plasma
Te + 1.5 keV
Ti + Te/2
ne + 1020 cm–3

Pump: 250-nm diameter 
Ip = 500 J/1 ns = 1015 W/cm2

Seed: 250-nm diameter 
Ip = 5 J/1 ns = 1013 W/cm2

TBD
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Particle trapping, harmonic generation, and frequency detuning  
are expected to limit the ion-acoustic wave amplitudes.
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Extending the platform to six beams in the 23° cone  
will test multiple-beam CBET modeling
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• Multiple-driven ion-acoustic waves may interact 
with each other, limiting CBET

• A forward-scattering geometry could be used  
to test CBET in the indirect-drive configuation

This experiment will test linear CBET theory in  
the presence of multiple-driven ion-acoustic waves.
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Summary/Conclusions

11

The objective of these campaigns is to address the current physics 
uncertainties with cross-beam energy transfer (CBET)

Ultimately, these studies will provide confidence in our models that 
will define the requirements for a multiple wavelength OMEGA.

• CBET significantly reduces the hydrodynamic efficiency  
in direct-drive implosions

• The proposed campaigns will test the limits of linear theory 
 – large ion-acoustic waves (IAW’s) 
 – multiple IAW’s within the same volume

• These laser–plasma interaction (LPI) studies will systematically  
address why the CBET models require multipliers

• This platform will demonstrate wavelength detuning as a mitigation 
strategy in laser direct-drive OMEGA implosion conditions
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A frequency-shifted 61st beam will be used with the CBET beamlets  
diagnostic* to demonstrate a quantitative understanding of wavelength  
tuning in direct-drive experiments

This configuration will be a robust test of our integrated CBET hydro-models 
and demonstrate CBET mitigation using wavelength shifting.
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* D. H. Edgell et al., UO9.00011, this conference.
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