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Summary

The YDT/YDD ratio in cryogenic inertial confinement fusion (ICF)  
experiments can be used to diagnose multi-fluid effects

• Multi-fluid effects can alter the inferred fuel composition caused  
by species separation during peak neutron production

• The YDT/YDD ratio has been measured for ignition-relevant direct-drive 
cryogenic DT implosions at the OMEGA laser facility

• The measured yield ratio is consistent with both the calculated values 
of the nuclear-reaction rates and the pre-shot target-fuel composition

• This measurement indicates that mechanisms that have been 
proposed to alter the fuel composition are not observed  
in ignition-relevant direct-drive cryogenic DT implosions
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Motivation

Mass diffusion can separate the fusing ions during peak neutron production  
in laser-driven inertial confinement fusion implosions

4

• Thermodynamic forces such as pressure and 
temperature gradients can lead to species 
separation in an initially homogenous plasma

• The diffusive mass flux in a plasma with two ion 
species take the form,

Barodiffusion theory*

• Since the D-T and D-D fusion reactivities are 
well known, this effect on ignition-relevant 
implosions can be empirically verified

– –diffusion
classical

diffusion
baro

diffusion
thermalT D Dt= + + =b l

t = total mass density
D = diffusion coefficient

Cold-fuel layer

Hot spot

T
D

T D

*P. Amendt et al., Phys. Rev. Lett. 105, 115005 (2010). 
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The process for neutron production near peak compression is different  
for highly kinetic and strongly hydrodynamic-like implosion designs
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The mean-free-path length (mii) and diffusion time (Tdiff) are different during 
peak neutron production for these different implosion designs
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• A relativistic equation* is used to forward the 
experimental data to infer the yield and ion 
temperature from the primary peaks

• The DT and DD neutron yield uncertainty is 5%** 
and 9%,† respecively

• The YDT/YDD ratio uncertainty is given by

  ~ %Y
Y

Y
Y Y

Y
Y Y

10
DD

DT

DT

DT DT

DD

DD DDD D D
= +

• The uncertainty in the ion temperature is driven 
by the instrument response fuction used in the 
forward-fit approach‡

  

DT

DD

eV

eV

T

T

250

200

!

!

D

D

=

=
i

i

E25563

A high-dynamic-range neutron time-of-flight diagnostic has the capability to 
measure both the DT and DD yield and ion temperature in a single line of sight
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 * L. Ballabio, J. Källne, and G. Gorini, Nucl. Fusion 38, 1723 (1998).
 ** O. Landoas et al., Rev. Sci. Instrum. 82, 073501 (2011).
 † C.  Waugh, M.S. thesis, Massachusetts Institute of Technology, 2014.
 ‡ C. J. Forrest et al., Rev. Sci. Instrum. 87, 11D814 (2016).
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The fusion-yield evaluation includes a correction for the neutron attenuation 
caused by the areal density of the cold-fuel assembly
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• The D-D neutron has approximately a factor of 3× more 
attenuation as compared to the D-T neutron

• With the areal densities achieved on OMEGA  
(<300 mg/cm2), multiple scattering can be neglected

– ideal platform to study the effects of fuel-species 
separation in ignition-relevant implosions

• In higher areal-density implosions, detailed simulations 
are required to correct for multiple scattering
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The calculated YDT/YDD ratios show good agreement  
with the nuclear measurements
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• The calculated reaction yield ratios follow the form

  YDT/YDD ~ /T f f2 .
i t d
0 4 ^ h*

• The uncertainty in the reactivity rate is given by

   DGvvHDT ~ 1%

• Three different fuel adjustments took place  
over a several-year period

  Initial measurement of the fuel inventory

  Final measurement of the fuel inventory

 * S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics,   
  Hot Dense Matter, International Series of Monographs on Physics (Clarendon Press, Oxford, 2004).

Fluid motion is not considered in this analysis.
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The measured pre-shot fuel composition for ignition-relevant implosions  
show good agreement with the inferred fuel fractions
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*W. T. Shmayda et al., Fusion Eng. Des. 109–111, Part A, 128 (2016). 

• The uncertainty in inferred fuel fractions from the 
nuclear measurements is given by

  
d

~ %f Y Y v 10DT DD DTY Y
2 2 2

DT DD
h vD D D= + +t _ _i i

• A gas chromatography technique is used  
to measure the pre-shot fuel composition*

  
d

. %f 1 5D =t
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A significant disagreement is observed between the measured pre-shot  
fuel composition for exploding pusher implosions
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Summary/Conclusions

The YDT/YDD ratio in cryogenic inertial confinement fusion (ICF)  
experiments can be used to diagnose multi-fluid effects

• Multi-fluid effects can alter the inferred fuel composition caused  
by species separation during peak neutron production

• The YDT/YDD ratio has been measured for ignition-relevant direct-drive 
cryogenic DT implosions at the OMEGA laser facility

• The measured yield ratio is consistent with both the calculated values 
of the nuclear-reaction rates and the pre-shot target-fuel composition

• This measurement indicates that mechanisms that have been 
proposed to alter the fuel composition are not observed  
in ignition-relevant direct-drive cryogenic DT implosions


