Measurements of Fusion-Reaction–Yield Ratios in Ignition-Relevant Direct-Drive Cryogenic Deuterium–Tritium Implosions

C. J. Forrest
University of Rochester
Laboratory for Laser Energetics

58th Annual Meeting of the American Physical Society Division of Plasma Physics San Jose, CA 31 October–4 November 2016
Summary

The Y_{DT}/Y_{DD} ratio in cryogenic inertial confinement fusion (ICF) experiments can be used to diagnose multi-fluid effects

- Multi-fluid effects can alter the inferred fuel composition caused by species separation during peak neutron production
- The Y_{DT}/Y_{DD} ratio has been measured for ignition-relevant direct-drive cryogenic DT implosions at the OMEGA laser facility
- The measured yield ratio is consistent with both the calculated values of the nuclear-reaction rates and the pre-shot target-fuel composition
- This measurement indicates that mechanisms that have been proposed to alter the fuel composition are not observed in ignition-relevant direct-drive cryogenic DT implosions
Collaborators

University of Rochester
Laboratory for Laser Energetics

M. Gatu-Johnson
Plasma Science and Fusion Center
Massachusetts Institute of Technology
Motivation

Mass diffusion can separate the fusing ions during peak neutron production in laser-driven inertial confinement fusion implosions

Barodiffusion theory*

- Thermodynamic forces such as pressure and temperature gradients can lead to species separation in an initially homogenous plasma
- The diffusive mass flux in a plasma with two ion species take the form,

\[T = -\rho D \left(\frac{\text{classical diffusion}}{\text{baro diffusion}} + \frac{\text{thermal diffusion}}{\text{diffusion}} \right) = -D \]

- Since the D-T and D-D fusion reactivities are well known, this effect on ignition-relevant implosions can be empirically verified

The process for neutron production near peak compression is different for highly kinetic and strongly hydrodynamic-like implosion designs.

![Graph showing neutron production and ion temperature over distance and time for two different times: 0.8 and 2.6. The graph on the left indicates the remaining SiO2 shell at Time = 0.8, while the graph on the right shows the ablation ice layer at Time = 2.6.](image-url)
The mean-free-path length (λ_{ii}) and diffusion time (T_{diff}) are different during peak neutron production for these different implosion designs.
A high-dynamic-range neutron time-of-flight diagnostic has the capability to measure both the DT and DD yield and ion temperature in a single line of sight.

- A relativistic equation* is used to forward the experimental data to infer the yield and ion temperature from the primary peaks.
- The DT and DD neutron yield uncertainty is 5%** and 9%,† respectively.
- The $\frac{Y_{DT}}{Y_{DD}}$ ratio uncertainty is given by
 \[
 \frac{\Delta Y_{DT}}{Y_{DD}} = \sqrt{\frac{\Delta Y_{DT} Y_{DT}}{Y_{DT}} + \frac{\Delta Y_{DD} Y_{DD}}{Y_{DD}}} \approx 10\%
 \]
- The uncertainty in the ion temperature is driven by the instrument response function used in the forward-fit approach‡
 \[
 \Delta T_{i}^{DT} = \pm 250 \text{ eV} \\
 \Delta T_{i}^{DD} = \pm 200 \text{ eV}
 \]

The fusion-yield evaluation includes a correction for the neutron attenuation caused by the areal density of the cold-fuel assembly

- The D-D neutron has approximately a factor of $3\times$ more attenuation as compared to the D-T neutron
- With the areal densities achieved on OMEGA (<300 mg/cm²), multiple scattering can be neglected
 - ideal platform to study the effects of fuel-species separation in ignition-relevant implosions
- In higher areal-density implosions, detailed simulations are required to correct for multiple scattering

\[
\Delta \eta_{Y_{DT}/Y_{DD}} = \sqrt{\frac{\Delta \eta_{Y_{DT}} \eta_{Y_{DT}}}{\eta_{Y_{DT}}} + \frac{\Delta \eta_{Y_{DD}} \eta_{Y_{DD}}}{\eta_{Y_{DD}}}} \approx 1\%
\]
The calculated Y_{DT}/Y_{DD} ratios show good agreement with the nuclear measurements.

- The calculated reaction yield ratios follow the form
 \[Y_{DT}/Y_{DD} \sim 2T_{i}^{0.4} (f_t/f_d)^{*} \]
- The uncertainty in the reactivity rate is given by
 \[\Delta \langle \sigma v \rangle_{DT} \sim 1\% \]
- Three different fuel adjustments took place over a several-year period
 - Initial measurement of the fuel inventory
 - Final measurement of the fuel inventory

Fluid motion is not considered in this analysis.

The measured pre-shot fuel composition for ignition-relevant implosions show good agreement with the inferred fuel fractions.

- The uncertainty in inferred fuel fractions from the nuclear measurements is given by

\[
\Delta f_d = \sqrt{(\Delta Y_{DT}/Y_{DD})^2 + (\Delta \eta_{DT}/Y_{DD})^2 + \langle \sigma v_{DT} \rangle^2} \sim 10\%
\]

- A gas chromatography technique is used to measure the pre-shot fuel composition*

\[
\Delta f_d = 1.5\%
\]

A significant disagreement is observed between the measured pre-shot fuel composition for exploding pusher implosions.

![Graph showing the comparison between assay and nuclear measurements for different ablator materials. The graph plots \(f_t/f_d \) assay measurement against \(f_t/f_d \) nuclear measurement. The data points represent different ablator materials: 20-\(\mu \)m CH ablator, 16-\(\mu \)m CH ablator, 27-\(\mu \)m CH ablator, and 3-\(\mu \)m SiO\(_2\) (exploding pusher).]
Summary/Conclusions

The Y_{DT}/Y_{DD} ratio in cryogenic inertial confinement fusion (ICF) experiments can be used to diagnose multi-fluid effects.

- Multi-fluid effects can alter the inferred fuel composition caused by species separation during peak neutron production.
- The Y_{DT}/Y_{DD} ratio has been measured for ignition-relevant direct-drive cryogenic DT implosions at the OMEGA laser facility.
- The measured yield ratio is consistent with both the calculated values of the nuclear-reaction rates and the pre-shot target-fuel composition.
- This measurement indicates that mechanisms that have been proposed to alter the fuel composition are not observed in ignition-relevant direct-drive cryogenic DT implosions.