Measurements of Fusion-Reaction–Yield Ratios in Ignition-Relevant Direct-Drive Cryogenic Deuterium–Tritium Implosions

C. J. Forrest **University of Rochester** Laboratory for Laser Energetics

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA

31 October-4 November 2016

The Y_{DT}/Y_{DD} ratio in cryogenic inertial confinement fusion (ICF) experiments can be used to diagnose multi-fluid effects

- Multi-fluid effects can alter the inferred fuel composition caused by species separation during peak neutron production
- The Y_{DT}/Y_{DD} ratio has been measured for ignition-relevant direct-drive cryogenic DT implosions at the OMEGA laser facility
- The measured yield ratio is consistent with both the calculated values of the nuclear-reaction rates and the pre-shot target-fuel composition
- This measurement indicates that mechanisms that have been proposed to alter the fuel composition are not observed in ignition-relevant direct-drive cryogenic DT implosions

Collaborators

V. Yu. Glebov, V. N. Goncharov, J. P. Knauer, P. B. Radha, S. P. Regan, M. J. Rosenberg, T. C. Sangster, W. T. Shmayda, and C. Stoeckl

> University of Rochester Laboratory for Laser Energetics

M. Gatu-Johnson Plasma Science and Fusion Center

Massachusetts Institute of Technology

Motivation

Mass diffusion can separate the fusing ions during peak neutron production in laser-driven inertial confinement fusion implosions

Barodiffusion theory*

- Thermodynamic forces such as pressure and temperature gradients can lead to species separation in an initially homogenous plasma
- The diffusive mass flux in a plasma with two ion species take the form,

 $T = -\rho D \left(\begin{array}{c} classical + baro + thermal \\ diffusion + diffusion + diffusion \end{array} \right) = -D$

 ρ = total mass density

D = diffusion coefficient

 Since the D-T and D-D fusion reactivities are well known, this effect on ignition-relevant implosions can be empirically verified

^{*}P. Amendt et al., Phys. Rev. Lett. 105, 115005 (2010).

The process for neutron production near peak compression is different for highly kinetic and strongly hydrodynamic-like implosion designs

The mean-free-path length (λ_{ii}) and diffusion time (T_{diff}) are different during peak neutron production for these different implosion designs

A high-dynamic-range neutron time-of-flight diagnostic has the capability to measure both the DT and DD yield and ion temperature in a single line of sight

E25563

- A relativistic equation* is used to forward the experimental data to infer the yield and ion temperature from the primary peaks
- The DT and DD neutron yield uncertainty is 5%** and 9%,[†] respecively
- The Y_{DT}/Y_{DD} ratio uncertainty is given by

$$\frac{\Delta \mathbf{Y}_{\text{DT}}}{\mathbf{Y}_{\text{DD}}} = \sqrt{\frac{\Delta \mathbf{Y}_{\text{DT}} \,\mathbf{Y}_{\text{DT}}}{\mathbf{Y}_{\text{DT}}} + \frac{\Delta \mathbf{Y}_{\text{DD}} \,\mathbf{Y}_{\text{DD}}}{\mathbf{Y}_{\text{DD}}}} \sim 10\%$$

• The uncertainty in the ion temperature is driven by the instrument response fuction used in the forward-fit approach[‡]

$$\Delta T_i^{DT} = \pm 250 \text{ eV}$$

 $\Delta T_i^{DD} = \pm 200 \text{ eV}$

- *L. Ballabio, J. Källne, and G. Gorini, Nucl. Fusion 38, 1723 (1998).
- **O. Landoas et al., Rev. Sci. Instrum. 82, 073501 (2011).
- [†]C. Waugh, M.S. thesis, Massachusetts Institute of Technology, 2014.
- [‡]C. J. Forrest et al., Rev. Sci. Instrum. 87, 11D814 (2016).

The fusion-yield evaluation includes a correction for the neutron attenuation caused by the areal density of the cold-fuel assembly

- The D-D neutron has approximately a factor of 3× more attenuation as compared to the D-T neutron
- With the areal densities achieved on OMEGA (<300 mg/cm²), multiple scattering can be neglected
 - ideal platform to study the effects of fuel-species separation in ignition-relevant implosions
- In higher areal-density implosions, detailed simulations are required to correct for multiple scattering

$$\Delta \eta_{\gamma_{\rm DT}}/\gamma_{\rm DD} = \sqrt{\frac{\Delta \eta_{\gamma_{\rm DT}}\eta_{\gamma_{\rm DT}}}{\eta_{\gamma_{\rm DT}}} + \frac{\Delta \eta_{\gamma_{\rm DD}}\eta_{\gamma_{\rm DD}}}{\eta_{\gamma_{\rm DD}}}}$$

<u>Y_{DD}</u> ~1%

The calculated Y_{DT}/Y_{DD} ratios show good agreement with the nuclear measurements

- The calculated reaction yield ratios follow the form $Y_{DT}/Y_{DD} \sim 2T_{i}^{0.4} (f_{t}/f_{d})^{*}$
- The uncertainty in the reactivity rate is given by $\Delta \langle \sigma v \rangle_{\rm DT} \sim 1\%$
- Three different fuel adjustments took place over a several-year period
 - Initial measurement of the fuel inventory
 - ----- Final measurement of the fuel inventory

Fluid motion is not considered in this analysis.

E25564

^{*}S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics (Clarendon Press, Oxford, 2004).

The measured pre-shot fuel composition for ignition-relevant implosions show good agreement with the inferred fuel fractions

ROCHESTER

• The uncertainty in inferred fuel fractions from the nuclear measurements is given by

$$\Delta f_{t}_{d} = \sqrt{\left(\Delta Y_{DT} / Y_{DD}\right)^{2} + \left(\Delta \eta_{Y_{DT}} / Y_{DT}\right)^{2}}$$

 A gas chromatography technique is used to measure the pre-shot fuel composition*

$$\Delta f_{t} = 1.5\%$$

*W. T. Shmayda et al., Fusion Eng. Des. <u>109–111</u>, Part A, 128 (2016).

A significant disagreement is observed between the measured pre-shot fuel composition for exploding pusher implosions

ROCHESTER

E25704

The Y_{DT}/Y_{DD} ratio in cryogenic inertial confinement fusion (ICF) experiments can be used to diagnose multi-fluid effects

- Multi-fluid effects can alter the inferred fuel composition caused by species separation during peak neutron production
- The Y_{DT}/Y_{DD} ratio has been measured for ignition-relevant direct-drive cryogenic DT implosions at the OMEGA laser facility
- The measured yield ratio is consistent with both the calculated values of the nuclear-reaction rates and the pre-shot target-fuel composition
- This measurement indicates that mechanisms that have been proposed to alter the fuel composition are not observed in ignition-relevant direct-drive cryogenic DT implosions

