
Comparing Ray-Based and Wave-Based Models  
of Cross-Beam Energy Transfer

R. K. Follett
University of Rochester
Laboratory for Laser Energetics

1

58th Annual Meeting of the
American Physical Society
Division of Plasma Physics

San Jose, CA
31 October–4 November 2016

LPSE simulation of two crossing beams
in a density and flow gradient
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Summary

A wave-based cross-beam energy transfer (CBET) model (LPSE-CBET)  
is used as a platform to test the accuracy of ray-based CBET models

• Ray-based and wave-based CBET show good agreement when 
the assumptions made in the ray-based model are satisfied

• Laser speckle can amplify CBET gains when the angle between 
the interacting beams is small

• The CBET interaction between speckled beams generates larger 
density perturbations than the interaction between plane waves
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Ray-based CBET models calculate CBET by considering  
pairwise interactions between rays

Assumptions
• Small ion-acoustic waves (IAW’s) (dn/n % 1)

• Plane-wave approximation
• Strong-damping limit (IAW’s do not propagate)

• Wentzel–Kramers Brillouin (WKB) approximation
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C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981). 
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Schematic of ray-interaction calculation



Electric-field amplitude Ion-density perturbation
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LPSE solves for the enveloped electric-field vector and the  
ponderomotively driven ion-density perturbations using  
fewer approximations than ray-based CBET models
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Electric-field amplitude Ion-density perturbation
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LPSE solves for the enveloped electric-field vector and the  
ponderomotively driven ion-density perturbations using  
fewer approximations than ray-based CBET models
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Ray- and wave-based CBET models show excellent agreement  
when the assumptions made in the ray-based model are satisfied

7

LPSE simulation of two crossing beams
in a density and flow gradient
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Ray- and wave-based CBET models show excellent agreement  
when the assumptions made in the ray-based model are satisfied
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LPSE simulation of two crossing beams
in a density and flow gradient
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Laser-beam speckle can cause CBET gains to differ from predictions  
based on the plane-wave approximation
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The CBET gain is sensitive to beam speckle for gains  
L1 and relative beam angles of K15° 
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CBET gain for various two-beam
interaction angles
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Speckled beams can generate larger density perturbations than plane-wave 
beams even when the CBET gain is not modified

11

–5
–5

0

5

0

Plane-wave beams Speckled beams

y (nm)

x 
(n

m
)

5 –5
–0.05

0.00

0.05

0

y (nm)

d
n

/n

5

Ratio of rms density perturbation from
speckled beams to plane waves

0°
90°

10°

10
0.5

d
n

sp
ec

kl
e /
d

n
p

la
n

e 
w

av
e

rm
s

rm
s

1.0

1.5

2.0

2.5

3.0

Intensity (×1014 W/cm2)

15 20 25 30
Enhanced density perturbations could lead to earlier 
saturation of CBET than would be predicted using  
a plane-wave approximation.



E25597

12

Summary/Conclusions

• Ray-based and wave-based CBET show good agreement when 
the assumptions made in the ray-based model are satisfied

• Laser speckle can amplify CBET gains when the angle between 
the interacting beams is small

• The CBET interaction between speckled beams generates larger 
density perturbations than the interaction between plane waves

A wave-based cross-beam energy transfer (CBET) model (LPSE-CBET)  
is used as a platform to test the accuracy of ray-based CBET models
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Campaign SBS6, SBS21:SBS90, homogeneous at ne/ne = 0.1, nui = 0.01
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