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Summary

Laser-driven magnetized liner inertial fusion (MagLIF) using a target 10× smaller 
than Z is being developed on OMEGA to provide the first data on scaling*

• Thermal losses increase as dimensions are reduced

• A simple model shows the final temperature scale as (Ct0r0v)2/5 
– C is fuel convergence ratio, t0 is initial fuel density, r0 is initial 

fuel radius, and v is implosion velocity of the fuel

• Maintaining a sufficient final temperature on OMEGA requires 
the implosion velocity to be at least double that on Z
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*D. H. Barnak, KI2.00004, this conference (invited).



Collaborators

D. H. Barnak, R. Betti, E. M. Campbell, V. Yu. Glebov, A. B. Sefkow, and J. P. Knauer

University of Rochester
Laboratory for Laser Energetics

K. J. Peterson, D. B. Sinars, S. A. Slutz, and M. R. Weis

Sandia National Laboratories

This project is funded by the Department of Energy’s 
Advanced Research Projects Agency-Energy (ARPA-E)

3



I2185e

MagLIF is an inertial confinement fusion (ICF) scheme using magnetized, 
preheated fuel to allow for cylindrical implosions with lower velocities 
and lower convergence ratios than conventional ICF*

• An axial magnetic field lowers electron thermal conductivity allowing a near-adiabatic compression 
at lower implosion velocities and confines alpha particles if BR > 0.6 T-m, allowing a lower areal density 

• Preheating to ~100 eV makes it possible for >1 keV to be reached at a convergence ratio <30
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*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).
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MagLIF is now being considered as a possible route to fusion ignition 
in the laboratory by the NNSA (National Nuclear Security Agency) 
along with indirect and direct drive

• DD fusion yields of 3.2 × 1012, neutron-averaged ion temperatures of 2.5 keV, 
and magnetic confinement of charged fusion products (BR ~ 0.4 T-m) 
have been obtained in Z experiments*

• Z is the only pulsed-power facility capable of carrying out MagLIF experiments; 
at least ~7 MA is required and Z cannot measure yields at lower currents

• OMEGA can carry out laser-driven MagLIF experiments because it has 
a magnetic-field generation capability [magneto-inertial fusion electrical 
discharge system (MIFEDS)]

5

*M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014).
*P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).

Laser-driven MagLIF on OMEGA will provide the first data on scaling 
and more shots with better diagnostic access than Z.
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OMEGA delivers 1000× less energy than Z so linear dimensions 
must be reduced by a factor of 10×

6

• A radius of 0.3 mm versus 2.79 mm on Z experiments was chosen to match existing phase plates

• MIFEDS could provide Bz ~ 10 T as used in Z experiments

• In the absence of thermal transport, OMEGA could achieve the same convergence ratio, 
implosion velocity, and temperature as Z

• Magnetic confinement of charged fusion products will be lost because their Larmor radius 
remains the same; BR is 10× lower

• Thermal conduction losses will be greater in smaller targets because of the increased surface- 
area-to-volume ratio and increased temperature gradient—how does this scale?
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Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  
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r is fuel outer radius, not radial coordinate
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Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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Ion thermal conduction

Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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Ion thermal conduction
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Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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PdV work

Estimate fuel temperature using a “0 D” energy balance with ion thermal 
conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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conduction to a cold shell and compression at constant velocity  

r is fuel outer radius, not radial coordinate
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Temperature at which thermal loss 
balances compression heating
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r is fuel outer radius, not radial coordinate
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Thermal losses are significant on Z and will be even greater on OMEGA
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Thermal losses are significant on Z and will be even greater on OMEGA
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Reducing fuel radius by 10× will lower the final temperature 2.5×
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• To maintain the final temperature within a factor of 2 requires an increase 
in Ct0v of at least 1.75×

• Increasing convergence ratio will increase instability growth and mix

• Increasing initial fuel density will create issues for laser preheating

• Aim for a design with roughly 2× the 70-km/s implosion velocity of the Z 
point design and experiments by using a relatively thinner shell 

– the current OMEGA point design has a shell aspect ratio (outer radius/ 
thickness) of 15 versus 6 for the Z point design and experiments, giving 
an implosion velocity of 188 km/s in 1-D simulations

– the peak ion temperature from 1-D simulations is 4.3 keV versus 8 keV 
for the Z point design
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The model predicts a threshold preheat temperature 
in agreement with 1-D simulations
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• To reach 90% of the limiting temperature requires
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Summary/Conclusions

*D. H. Barnak, KI2.00004, this conference (invited).

Laser-driven magnetized liner inertial fusion (MagLIF) using a target 10× smaller 
than Z is being developed on OMEGA to provide the first data on scaling*

• Thermal losses increase as dimensions are reduced

• A simple model shows the final temperature scale as (Ct0r0v)2/5 
– C is fuel convergence ratio, t0 is initial fuel density, r0 is initial 

fuel radius, and v is implosion velocity of the fuel

• Maintaining a sufficient final temperature on OMEGA requires 
the implosion velocity to be at least double that on Z


