Temperature Scaling for Magnetized Liner Inertial Fusion

Axial-field coils

OMEGA: 14.5 kJ ~1 kJ in target *r* = 0.3 mm

40 beam for compression

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Summary

Laser-driven magnetized liner inertial fusion (MagLIF) using a target 10× smaller than Z is being developed on OMEGA to provide the first data on scaling*

- Thermal losses increase as dimensions are reduced
- A simple model shows the final temperature scale as $(C\rho_0 r_0 v)^{2/5}$
 - C is fuel convergence ratio, ρ_0 is initial fuel density, r_0 is initial fuel radius, and v is implosion velocity of the fuel
- Maintaining a sufficient final temperature on OMEGA requires the implosion velocity to be at least double that on Z

E25696

*D. H. Barnak, KI2.00004, this conference (invited).

Collaborators

D. H. Barnak, R. Betti, E. M. Campbell, V. Yu. Glebov, A. B. Sefkow, and J. P. Knauer **University of Rochester** Laboratory for Laser Energetics

K. J. Peterson, D. B. Sinars, S. A. Slutz, and M. R. Weis

Sandia National Laboratories

This project is funded by the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E)

MagLIF is an inertial confinement fusion (ICF) scheme using magnetized, preheated fuel to allow for cylindrical implosions with lower velocities and lower convergence ratios than conventional ICF*

- An axial magnetic field lowers electron thermal conductivity allowing a near-adiabatic compression at lower implosion velocities and confines alpha particles if BR > 0.6 T-m, allowing a lower areal density
- Preheating to ~100 eV makes it possible for >1 keV to be reached at a convergence ratio <30

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).

MagLIF is now being considered as a possible route to fusion ignition in the laboratory by the NNSA (National Nuclear Security Agency) along with indirect and direct drive

- DD fusion yields of 3.2×10^{12} , neutron-averaged ion temperatures of 2.5 keV, and magnetic confinement of charged fusion products (BR ~ 0.4 T-m) have been obtained in Z experiments*
- Z is the only pulsed-power facility capable of carrying out MagLIF experiments; at least ~7 MA is required and Z cannot measure yields at lower currents
- OMEGA can carry out laser-driven MagLIF experiments because it has a magnetic-field generation capability [magneto-inertial fusion electrical discharge system (MIFEDS)]

Laser-driven MagLIF on OMEGA will provide the first data on scaling and more shots with better diagnostic access than Z.

*M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014). P. F. Schmit et al., Phys. Rev. Lett. 113, 155004 (2014).

OMEGA delivers 1000× less energy than Z so linear dimensions must be reduced by a factor of $10\times$

- A radius of 0.3 mm versus 2.79 mm on Z experiments was chosen to match existing phase plates
- MIFEDS could provide $B_7 \sim 10$ T as used in Z experiments
- In the absence of thermal transport, OMEGA could achieve the same convergence ratio, implosion velocity, and temperature as Z
- Magnetic confinement of charged fusion products will be lost because their Larmor radius remains the same; BR is 10× lower
- Thermal conduction losses will be greater in smaller targets because of the increased surfacearea-to-volume ratio and increased temperature gradient—how does this scale?

$$\nabla T \sim \frac{T}{r}$$

$$\frac{d}{dt}(3neT\pi r^{2}) \sim -K_{0}T^{5/2}\frac{T}{r}2\pi r - 2neT\frac{d}{dt}(\pi r^{2})$$

$$\frac{T}{T_{c}} = \frac{0.7^{2/5}C^{4/3}}{\left[C^{7/3} - 1 + 0.7(T_{c}/T_{0})^{5/2}\right]^{2/5}}$$

$$T_{c} = \left(\frac{2en_{0}r_{0}v}{K_{0}}\right)^{2/5}eV$$

$$\nabla T \sim \frac{T}{r}$$

$$\frac{d}{dt}(3neT\pi r^2) \sim -K_0 T^{5/2} \frac{T}{r} 2\pi r - 2neT \frac{d}{dt}(\pi r^2)$$

$$T \qquad 0.7^{2/5} C^{4/3}$$

$$\frac{T}{T_{c}} = \frac{0.727 C^{4/3}}{\left[C^{7/3} - 1 + 0.7 (T_{c}/T_{0})^{5/2}\right]^{2/5}}$$
$$T_{c} = \left(\frac{2en_{0}r_{0}v}{K_{0}}\right)^{2/5} eV$$

T

$$\nabla T \sim \frac{T}{r}$$

$$\frac{d}{dt}(3neT\pi r^{2}) \sim -K_{0}T^{5/2}\frac{T}{r}2\pi r - 2neT\frac{d}{dt}(\pi r^{2})$$

$$\frac{T}{T_{c}} = \frac{0.7^{2/5}C^{4/3}}{\left[C^{7/3} - 1 + 0.7(T_{c}/T_{0})^{5/2}\right]^{2/5}}$$

$$T_{c} = \left(\frac{2en_{0}r_{0}v}{K_{0}}\right)^{2/5}eV$$

$$\nabla T \sim \frac{T}{r} \quad \text{Ion thermal conduction}$$
$$\frac{d}{dt}(3neT\pi r^2) \sim \left[-K_0 T^{5/2} \frac{T}{r} 2\pi r\right] - 2neT \frac{d}{dt}(\pi r^2)$$
$$\frac{T}{T_c} = \frac{0.7^{2/5} C^{4/3}}{\left[C^{7/3} - 1 + 0.7 (T_c/T_0)^{5/2}\right]^{2/5}}$$
$$T_c = \left(\frac{2en_0 r_0 v}{K_0}\right)^{2/5} eV$$

r is fuel outer radius, not radial coordinate

Electron hall parameter

E25699d

$$\nabla T \sim \frac{T}{r}$$
PdV work
$$\frac{d}{dt}(3neT\pi r^2) \sim -K_0 T^{5/2} \frac{T}{r} 2\pi r \left[-2neT \frac{d}{dt}(\pi r^2)\right]$$

$$\frac{T}{T_c} = \frac{0.7^{2/5} C^{4/3}}{\left[C^{7/3} - 1 + 0.7(T_c/T_0)^{5/2}\right]^{2/5}}$$

$$T_c = \left(\frac{2en_0 r_0 v}{K_0}\right)^{2/5} eV$$

$$\nabla T \sim \frac{T}{r}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(3neT\pi r^2) \sim -K_0 T^{5/2} \frac{T}{r} 2\pi r - 2neT \frac{\mathrm{d}}{\mathrm{d}t}(\pi r^2)$$

$$\frac{T}{T_{c}} = \frac{0.7^{2/5} C^{4/3}}{\left[C^{7/3} - 1 + 0.7 \left(T_{c} / T_{0}\right)^{5/2}\right]^{2/5}}$$

$$T_{c} = \left(\frac{2en_{0}r_{0}v}{K_{0}}\right)^{2/5} eV$$

$$\nabla T \sim \frac{T}{r}$$

$$\frac{d}{dt}(3neT\pi r^2) \sim -K_0 T^{5/2} \frac{T}{r} 2\pi r - 2neT \frac{d}{dt}(\pi r^2)$$

$$\frac{T}{T_c} = \frac{0.7^{2/5} C^{4/3}}{\left[C^{7/3} - 1 + 0.7 (T_c/T_0)^{5/2}\right]^{2/5}}$$

$$T_c = \left(\frac{2en_0 r_0 v}{K_0}\right)^{2/5} eV$$
Temperature at which thermal loss balances compression heating

Thermal losses are significant on Z and will be even greater on OMEGA

E25700

Thermal losses are significant on Z and will be even greater on OMEGA

E25700a

Reducing fuel radius by $10 \times$ will lower the final temperature $2.5 \times$

- To maintain the final temperature within a factor of 2 requires an increase in $C\rho_0 v$ of at least 1.75×
- Increasing convergence ratio will increase instability growth and mix
- Increasing initial fuel density will create issues for laser preheating
- Aim for a design with roughly $2 \times$ the 70-km/s implosion velocity of the Z point design and experiments by using a relatively thinner shell
 - the current OMEGA point design has a shell aspect ratio (outer radius/ thickness) of 15 versus 6 for the Z point design and experiments, giving an implosion velocity of 188 km/s in 1-D simulations
 - the peak ion temperature from 1-D simulations is 4.3 keV versus 8 keV for the Z point design

The model predicts a threshold preheat temperature in agreement with 1-D simulations

• To reach 90% of the limiting temperature requires

$$T_0 > 1.47 \frac{T_c}{C^{14/15}} \sim 120 \left(\sqrt{\frac{2}{A}} \frac{\rho 0}{2.4 \text{ mg/cm}^3} \frac{r_0}{0.3 \text{ mm}} \frac{v}{140 \text{ km/s}} \right)^{2/5} \left(\frac{C}{25} \right)^{1/5}$$

E25702

-14/15 eV

Summary/Conclusions

Laser-driven magnetized liner inertial fusion (MagLIF) using a target 10× smaller than Z is being developed on OMEGA to provide the first data on scaling*

- Thermal losses increase as dimensions are reduced
- A simple model shows the final temperature scale as $(C\rho_0 r_0 v)^{2/5}$
 - C is fuel convergence ratio, ρ_0 is initial fuel density, r_0 is initial fuel radius, and v is implosion velocity of the fuel
- Maintaining a sufficient final temperature on OMEGA requires the implosion velocity to be at least double that on Z

E25696

*D. H. Barnak, KI2.00004, this conference (invited).