Picosecond Characterization of Underdense Plasmas for Studying Nonlinear Electron Plasma Wave Dynamics

A. Davies **University of Rochester** Laboratory for Laser Energetics

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Time-resolved Thomson scattering was used to characterize the temperature and density of a low-density plasma on a picosecond time scale

- The electron temperature was measured to increase rapidly to 90 eV over the first 15 ps and continues to 100 eV by 50 ps
- Initial measurements of the stimulated Raman scattering (SRS) backscatter spectrum have shown evidence of nonlinear electron plasma waves (EPW's) at high intensities
- Dynamic Thomson scattering will be used to directly probe the amplitude and frequency of the EPW's
 - trapping-induced frequency shifts
 - wavebreaking threshold
 - Landau damping

E25686

Collaborators

S. Bucht, J. Katz, D. Haberberger, I. A. Begishev, S.-W. Bahk, J. Bromage, J. D. Zuegel, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

> > **R.**Trines

Rutherford Appleton Laboratory

R. Bingham University of Strathclyde

J. D. Sadler and P. A. Norreys

University of Oxford

Reasearch sponsored by the Office Fusion Energy Sciences and Contract Number DE-SC0016253

Initial experiments are focusing on characterizing the plasma and measuring SRS backscatter dynamics in the nonlinear regime

E25687

An H₂ gas cell was used to create a 4-mm-long homogenous plasma and characterized using interferometry

Interferometry indicates a neutral gas uniformity less than 4% rms.

rms: root mean square

A novel high-throughput (f/5), ultrafast (ps), Thomson-scattering system* was used to measure the evolution of the plasma conditions

This system is $>20\times$ faster than an equivalent (f/5) conventional streaked spectrometer diagnostic.

[†]IAW: ion-acoustic wave

*J. Katz et al., Rev. Sci. Instrum. 87, 11E535 (2016).

Thermal Thomson scattering was used to measure the electron temperature and density

The electron temperature was measured to increase rapidly in 15 ps to 90 eV.

The backscatter spectrum suggests nonlinear physics are involved in high-intensity short-pulse experiments

A dynamic Thomson-scattering diagnostic will measure the frequency and amplitude of driven electron plasma waves

These experiments will quantify the effects of trapping ($\Delta \omega_{\rm NL}$) and the wavebreaking threshold in a well-characterized plasma.

Time-resolved Thomson scattering was used to characterize the temperature and density of a low-density plasma on a picosecond time scale

- The electron temperature was measured to increase rapidly to 90 eV over the first 15 ps and continues to 100 eV by 50 ps
- Initial measurements of the stimulated Raman scattering (SRS) backscatter spectrum have shown evidence of nonlinear electron plasma waves (EPW's) at high intensities
- Dynamic Thomson scattering will be used to directly probe the amplitude and frequency of the EPW's
 - trapping-induced frequency shifts
 - wavebreaking threshold
 - Landau damping

E25686

