## **Design of Platforms for Backlighting Spherical Implosions** on OMEGA and the NIF



**R. S. Craxton University of Rochester** Laboratory for Laser Energetics







#### 58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

#### Summary

# Designs have been developed for OMEGA and the NIF to allow for nearly symmetric implosions when beams are removed for backlighting

- Using the hydrodynamics code SAGE, a design for OMEGA that adjusts beam pointings and energies has been demonstrated to give uniform 54-beam implosions
- An improved design for OMEGA removes the need for energy adjustments
- A design for the NIF allows for uniform implosions with two missing quads







2

#### **Collaborators**

M. Hohenberger, W. E. Kehoe,\* F. J. Marshall, D. T. Michel, P. B. Radha, and M. J. Rosenberg

> University of Rochester Laboratory for Laser Energetics

\*LLE Summer High School Program





# In the OMEGA experiment, six beams irradiated the backlighter, leaving 54 beams to drive the implosion





TC12965



#### Ti backlighter

# 18 OMEGA beams in the vicinity of the six backlighter beams were repointed and given 33% more energy than the other beams



Kochester

TC12966





#### With the optimized configuration the deposited energy is uniform to 0.74%







6

# The symmetry of 54-beam implosions on OMEGA was greatly improved by adjusting the beam energies and pointings



ROCHESTER

TC12968



#### An improved design repoints all 54 beams without any energy adjustments







## For backlighting experiments on the NIF using two quads, the energies and pointings of 16 surrounding beams were adjusted

KOCHESTER



![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

## The Ring 3b beams deposit more energy near the backlighter quads

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

#### The Ring 4 beams deposit less energy near the backlighter quads

![](_page_10_Picture_1.jpeg)

![](_page_10_Picture_2.jpeg)

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

## The total deposited energy is uniform near the backlighter quads with a residual nonuniformity pattern

![](_page_11_Figure_1.jpeg)

![](_page_11_Picture_2.jpeg)

![](_page_11_Picture_3.jpeg)

#### A self-emission image from the pole shows no evidence of nonuniformity caused by the missing backlighting quads

![](_page_12_Figure_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Figure_3.jpeg)

#### Summary/Conclusions

# Designs have been developed for OMEGA and the NIF to allow for nearly symmetric implosions when beams are removed for backlighting

- Using the hydrodynamics code SAGE, a design for OMEGA that adjusts beam pointings and energies has been demonstrated to give uniform 54-beam implosions
- An improved design for OMEGA removes the need for energy adjustments
- A design for the NIF allows for uniform implosions with two missing quads

![](_page_13_Picture_5.jpeg)

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

14