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Summary

Ice thickening near the target stalk is hypothesized  
to give rise to hot-spot velocities in OMEGA cryo targets

• Systemic hot-spot velocity is seen in cryo shots on OMEGA,  
not in room-temperature implosions 

• We hypothesize that this is from a strong , = 1 mode  
(along the z axis) in the ice–gas interface

• DRACO simulations using measured ice-roughness parameters  
are able to replicate hot-spot velocity values seen in neutron  
time-of-flight (nTOF) diagnostics

• DRACO simulations predict increased performance by moving  
the target along the z axis to compensate for the ice-roughness 
, = 1 mode

 – this will be tested on OMEGA in February
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Histograms of speed along the P2 to P11 axis shows cryogenic implosions  
have a mean hot-spot velocity around –84 km/s
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• Red distribution for warm implosions
 – 37 total; mean = –26 km/s !27 km/s 

• Blue distribution for cryogenic implosions 
 – 28 total; mean = –84 km/s !27 km/s
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Ice roughness on the Laboratory for Laser Energetics (LLE’s) layered  
targets have an apparent , = 1 mode as seen by the characterization  
stations from the 26° view plane 

• Overall, ice thickness varies from –1.5 nm at !26° from the north pole to +1.5 nm at !54°
 – data obtained from the view plane that is 26° off-axis
 – it is unknown if ice roughness worsens or improves closer to the poles
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ẑ
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North–south ice-thickness asymmetry can cause performance  
degradation because of nonuniform convergence
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• Thicker ice on the south pole compared  
to the north pole

 – causes the northern thinner shell 
portion to have higher implosion 
speed

• Asymmetric convergence will cause  
an overall velocity to be imposed  
on the hot spot 

 – effect would be systematic  
for cryo shots

 – hot-spot velocity measureable  
with nTOF diagonostics
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To simulate the effect of ice thickening near the stalk, the , = 1 mode  
of a 0.83-rms ice-roughness spectrum was modified
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• Modes modeled go up to , = 13

• The , = 1 mode was modified so that the overall  
ice roughness would meet the measured 
parameters

 – Rinterface = GRgas H – 1.5 nm at i = !26°
 – Rinterface = GRgas H + 1.5 nm at i = !154°
 – this results in a ~3× increase of the original  
, = 1 mode amplitude
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Observed hot-spot speed toward P11 can be reproduced with DRACO  
flux-limited, cryo simulations that include the , = 1 mode shown previously

• Hot-spot velocity along the z axis was obtained using the formula 

• nTOF measurements show a systematic 84-km/s average hot-spot 
velocity toward P11 for cryogenic shots

• A prediction of 74 km/s toward P11 is obtained with DRACO flux-
limited simulations that include the , = 1 mode shown previously

• In general, an implosion speed is obtained if the ice roughness  
is dominantly low mode and uniformly illuminated
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These perturbations can be corrected  
with the nTOF measurements serving as a litmus test

• Repositioning the target in z (zcomp) can redistribute laser energy from the thinner 
to the thicker ice layer to compensate for developing asymmetries

 – this will cause the nTOF measured hot-spot velocity to decrease
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ẑ
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Target performance is expected to increase given enough zcomp

• A decrease in hot-spot velocity implies a rounder implosion
 – this results in increased target performance [e.g., increased  
hot-spot pressure for the same convergence ratio (CR)]
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Simulations suggest that using a zcomp = +16 nm can 
improve P

hs
n  from 50 Gbar to 80 Gbar for the same CR.

Hot-spot evolution
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Summary/Conclusions
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