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Summary

The 1-D campaign on OMEGA uses systematic changes and looks for trends 
to improve physics understanding and find the optimal target design

• The 1-D campaign uses ON/OFF systematic changes in cryo implosions
 to understand the implosion behavior

• The 1-D campaign looks for 1-D trends in qualitative features of the experimental 
observables to elucidate the physics and assess the dimensionality

 of the implosion

• A short-term goal is to find the optimum 1-D performance at high adiabat (~7) 
using two-shock (single-picket) pulse shapes

• The ultimate goal is to find the optimum target design through an adiabat
 and velocity scan
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The time history of the hot-spot radius R17% monitors deviations 
from one-dimensional behavior
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A. Bose et al., UO5.00001, this conference.
YOC: yield over clean

The time history of the hot-spot radius reveals what modes are dominant.

• Low modes (, ~2) increase the hot-spot size

• Intermediate modes (, ~10) decrease the size
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The shape of the hot-spot self-emission is another measure 
of the deviations from a one-dimensional implosion

5

R. Nora, Lawrence Livermore National Laboratory, 
private communication (2013).
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Rayleigh-Taylor (RT) spikes from 
intermediate modes lead to a 
peaked self-emission profile.
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A necessary condition for a one-dimensional implosion is that the neutron yield 
follows the 1-D formula based on stagnation properties
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This is only true if our stagnation
physics models are correct.

R. Betti et al., Phys. Plasmas 17, 058102 (2010).
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A typical cryogenic shot day of the 1-D campaign 
uses sets of systematic ON/OFF pairs of shots
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*A. R. Christopherson et al., NO5.00007, this conference.
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The first high-adiabat targets are designed for a ≈ 7 
and compared to best performer* a ≈ 3
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S. P. Regan et al., Phys. Rev. Lett. 117, 025001 (2016); A. Bose et al., Phys. Rev. E 94, 011201(R) (2016).
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2-D post-shot simulations including low-mode perturbations 
show little degradation from low modes
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T. J. B. Collins et al., PO5.00009,
this conference.

Multidimensional simulations are used to assist our strategy and help  
the interpretation of the results, but are not used to reach final conclusions.

• Simulations including beam mistiming, mispointing, and 5.3% power imbalance, with measured 
ice roughness and target offset, show a reduction in yield of 17% from the clean yield

• Even when the power imbalance is doubled to 10%, the yield degradation is just 26%

Bang time, 2.55 ns
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The ion temperature is below the predictions of the 1-D code
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For high-adiabat shots, the measured yield closely follows a T4 power law
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The 50-Gbar shots do not follow the T4 power law; LILAC fit of the yield is T4.7.
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Preliminary analysis of the hot-spot framed images indicate the presence 
of RT spikes from mid-, modes after stagnation
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*A. Bose et al., UO5.00001, this conference.
**F. J. Marshall, Laboratory for Laser Energetics, 

private communication (2016).

This analysis will make it possible to generate a multidimensional 
picture of the hot-spot dynamics (error bars are large " look at trends).
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Summary/Conclusions
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The 1-D-campaign on OMEGA uses systematic changes and looks for trends 
to improve physics understanding and find the optimal target design

• The 1-D campaign uses ON/OFF systematic changes in cryo implosions
 to understand the implosion behavior

• The 1-D campaign looks for 1-D trends in qualitative features of the experimental 
observables to elucidate the physics and assess the dimensionality

 of the implosion

• A short-term goal is to find the optimum 1-D performance at high adiabat (~7) 
using two-shock (single-picket) pulse shapes

• The ultimate goal is to find the optimum target design through an adiabat
 and velocity scan
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No clear signatures of imprinting are observed, indicating 
stable implosions to short wavelengths

14

*S. X. Hu et al., Phys. Plasmas 23, 
102701 (2016).

In warm targets, SSD OFF leads to earlier bang times and wider burn histories.*

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.5

Laser

1.0 1.5

A
rb

it
ra

ry
 u

n
it

s
(n

o
rm

al
iz

ed
 to

 p
ea

k)

2.0 2.5 3.0 Experiment
LILAC

NTD

25 ps

0.0 0.5

Laser

1.0 1.5 2.0 2.5 3.0

NTD

0

2

4

6

8

10

NTD NTDLow I
80807
SSD ON

2.4 2.5

Time (ns)

A
rb

it
ra

ry
 u

n
it

s
(n

o
rm

al
iz

ed
 to

 s
am

e 
yi

el
d

)

2.6 2.7

Low I
80807
SSD OFF

2.4 2.5

Time (ns)

2.6 2.7

50 ps

BW = 102 ps
BW = 91 ps

BW = 102 ps
BW = 91 ps

Low I
80811
SSD OFF

Low I
80807
SSD ON



TC13099

The measured yield is about 60% of the LILAC yield and ~85% 
of the 1-D yield formula based on measured T and tR
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The measured Ti is slightly lower than LILAC Ti and explains ~1/2 of the discrepancy; 
early indication of a 1-D-code over-prediction of 1-D yield.
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A comparison between YOC’s from LILAC and the 1-D formula gives 
preliminary indications of the 1-D code over-estimating the 1-D yield

• Differences between LILAC YOC and 1-D formula 
can be reconciled using high-mode distortion

• SSD-ON/OFF experiments indicate implosions 
stable to high modes

• Possible explanation is that LILAC overpredicts 
the 1-D yield
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The yield formula also provides a lower bound for the
1-D yield in implosions degraded by nonuniformities.
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Similar trends are observed for higher intensity shots 
(but larger bang-time differences)
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