
Magnetized Liner Inertial Fusion on OMEGA

D. H. Barnak
University of Rochester
Laboratory for Laser Energetics

1

58th Annual Meeting of the
American Physical Society
Division of Plasma Physics

San Jose, CA
31 October–4 November 2016

20 normal beams

20 oblique beams

Magnetic field coil

Preheat
laser beam

Cylindrical
implosion

target



TC13137

Summary

Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA 
is providing the first experimental data on scaling

•	 A point design for MagLIF on OMEGA was developed using
	 1-D and 2-D magnetohydrodynamic (MHD) simulations

•	 Focused experiments for separately optimizing preheating
	 and implosion uniformity demonstrated the viability
	 of the point design

•	 Preliminary integrated MagLIF experiments show an increase
	 in neutron yield with preheating and magnetization
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Laser-driven MagLIF will accelerate progress of MagLIF on Z.



Collaborators

R. Betti, M. J. Bonino, E. M. Campbell, J. R. Davies, V. Yu. Glebov, D. R. Harding,
J. P. Knauer, S. P. Regan, and A. B. Sefkow

University of Rochester
Laboratory for Laser Energetics

A. J. Harvey-Thompson, K. J. Peterson, D. B. Sinars, S. A. Slutz, and M. R. Weis

Sandia National Laboratories

3

This project is funded by the Department of Energy’s
Advanced Research Projects Agency-Energy (ARPA-E)



TC13138

Outline

•	 Introduction to MagLIF/Motivation

•	 OMEGA-scale MagLIF point design

•	 Preheat experiments

•	 Implosion-optimization experiments

•	 Integrated-MagLIF implosions on OMEGA

•	 Future projects
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MagLIF uses a Z-pinch driven implosion, laser preheating, and magnetization 
to reduce radial conduction losses and confine alpha particles
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*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).

•	 An axial magnetic field lowers electron thermal conductivity, allowing 
for a near-adiabatic compression at lower implosion velocities and 
confinement of alpha particles 

•	 Laser preheating to ~100 eV makes it possible for >1 keV to be reached 
at a convergence ratio <30
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MagLIF implosions on OMEGA provide a platform for studying 
the physics principles and scalability of the concept

•	 A faster shot cycle allows for more shots, better statistics, and wider scans
	 of the MagLIF parameter space

•	 Better diagnostic access allows for measurements that cannot be 
performed at the Z scale

–	magnetic-field/Nernst-effect measurements, shell trajectories

•	 OMEGA-scale experiments provide code validation over 1000× in energy
–	ultimately, we will have the confidence in extrapolating
	 to ignition-scale designs
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The OMEGA point design is energy scaled from the Sandia/Z 27 MA point design

•	 OMEGA will couple ~0.01 MJ cm–1 to a cylindrical shell
–	shell aspect ratio tuned to increase implosion velocity and mitigate end losses
–	fuel density tuned to limit convergence ratio (CR) to ~25
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1-D LILAC-MHD modeling was used to optimize 
the OMEGA MagLIF design

•	 Pulse length, shell thickness, and fuel density were varied for a fixed 
10-T magnetic field and 200-eV preheat temperature
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A pulse length of 1.5 ns and a fuel density above 1.5 mg/cm3 
gives the maximum yield within the constraint of CR < 30.
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Magnetic field and preheat reduce convergence ratio and implosion speed 
and provide a more stable cylindrical implosion
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•	 Higher core pressures are achieved because of the suppression 
of radial conduction loss by the magnetic field
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A minimum preheat temperature of 100 eV is required for a significant increase 
in neutron yield for any shell thickness and magnetic field at a CR < 30
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The preheat experiments measured LEH window transmission 
and gas heating using a single OMEGA beam
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Foil transmission exceeds 50% with no backscatter from the gas 
and less than 10% sidescatter of transmitted light
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Backscatter from foils and from full targets are very similar 
and contain a negligible amount of the laser energy.
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X-ray measurements of the LEH window disassembly is in good agreement 
relative to shot-to-shot variation with the 2-D hydrodynamics code FLASH*
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*B. Fryxell et al., Astrophys. J. Suppl. Ser. 131, 273 (2000).

•	 Output from the FLASH code is post-processed using Spect3D atomic modeling 
to generate simulated filtered x-ray diode traces
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Analysis of soft x rays from the side window infer a minimum possible 
gas temperature of 100 eV at 1.3 ns into the laser pulse
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The minimum preheat requirement can be routinely achieved.
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Implosion-only experiments were used to optimize the beam pointing 
and balance between normal and oblique beams
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X-ray self-emission images show that obtaining a uniform implosion 
over the maximum length requires reduced energy in the normal beams

•	 Each image is curve fit to 
find the shell shape in terms 
of polynomial coefficients 

•	 The ratio of b/a determines 
whether the shell ends are 
over/underdriven
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Time-integrated x-ray pinhole lineouts demonstrate that thinner shells 
provide a more uniform core

•	 For a thinner shell with the same 
nominal drive, the core emission 
becomes longer and flatter

•	 This suggests that a faster implosion 
is needed at the OMEGA scale to 
mitigate end losses
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The first integrated MagLIF experiments scanned preheat beam timing

•	 The optimum preheat timing appears to be around 1 ns before the drive beams, 
in agreement with simulations

–	must repeat 1.3-ns shots because of poor implosion quality
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Yield enhancement from both preheat and magnetic field, and preheat 
only match closely with simulation predictions
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Improvements in target fabrication have increased yields 
of implosion-only shots
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The MagLIF platform is continuing to develop and improve.

November 2015 July 2016 September 2016

Highest yields

7.49 × 107 7.65 × 108 1.04 × 109
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Measurements of axial magnetic-field compression will be made next week

•	 Probing magnetic-field advection within the hot spot will validate MHD 
simulations and the inclusion of the Nernst effect
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*M. G. Haines, Plasma Phys. Control. Fusion 28 1705 (1986).
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Experiments to explore the MagLIF parameter space 
are scheduled over the next year

•	 B-field scan

–	optimum B field is a key question for MagLIF

–	scaling with B field to study Nernst effect

–	experiment with new techniques to reach higher fields

•	 Fill-density scan

–	determine highest achievable convergence ratio

•	 Shell-thickness scan

–	determine minimum thickness possible

–	laser-driven MagLIF has the ability to use thinner shells with higher implosion 
velocities because of ablative stabilization of the Rayleigh–Taylor instability

28



Summary/Conclusions
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Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA 
is providing the first experimental data on scaling

•	 A point design for MagLIF on OMEGA was developed using
	 1-D and 2-D magnetohydrodynamic (MHD) simulations

•	 Focused experiments for separately optimizing preheating
	 and implosion uniformity demonstrated the viability
	 of the point design

•	 Preliminary integrated MagLIF experiments show an increase
	 in neutron yield with preheating and magnetization

Laser-driven MagLIF will accelerate progress of MagLIF on Z.


