Magnetized Liner Inertial Fusion on OMEGA

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Summarv

Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA is providing the first experimental data on scaling

- A point design for MagLIF on OMEGA was developed using 1-D and 2-D magnetohydrodynamic (MHD) simulations
- Focused experiments for separately optimizing preheating and implosion uniformity demonstrated the viability of the point design
- Preliminary integrated MagLIF experiments show an increase in neutron yield with preheating and magnetization

Laser-driven MagLIF will accelerate progress of MagLIF on Z.

Collaborators

R. Betti, M. J. Bonino, E. M. Campbell, J. R. Davies, V. Yu. Glebov, D. R. Harding, J. P. Knauer, S. P. Regan, and A. B. Sefkow

> **University of Rochester** Laboratory for Laser Energetics

A. J. Harvey-Thompson, K. J. Peterson, D. B. Sinars, S. A. Slutz, and M. R. Weis

Sandia National Laboratories

This project is funded by the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E)

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

MagLIF uses a Z-pinch driven implosion, laser preheating, and magnetization to reduce radial conduction losses and confine alpha particles

- An axial magnetic field lowers electron thermal conductivity, allowing for a near-adiabatic compression at lower implosion velocities and confinement of alpha particles
- Laser preheating to ~100 eV makes it possible for >1 keV to be reached at a convergence ratio <30

l2185f

*S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).

MagLIF implosions on OMEGA provide a platform for studying the physics principles and scalability of the concept

- A faster shot cycle allows for more shots, better statistics, and wider scans of the MagLIF parameter space
- Better diagnostic access allows for measurements that cannot be performed at the Z scale
 - magnetic-field/Nernst-effect measurements, shell trajectories
- OMEGA-scale experiments provide code validation over 1000× in energy
 - ultimately, we will have the confidence in extrapolating to ignition-scale designs

TC13139

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

The OMEGA point design is energy scaled from the Sandia/Z 27 MA point design

- OMEGA will couple ~0.01 MJ cm⁻¹ to a cylindrical shell
 - shell aspect ratio tuned to increase implosion velocity and mitigate end losses
 - fuel density tuned to limit convergence ratio (CR) to ~25

OMEGA

- 1.5-ns drive
- L = 0.7 mm
- $B_0 = 10 \, \mathrm{T}$
- ρ > 1.5-mg/cm³ D₂
 - E/L = 0.01 MJ/cm

1-D *LILAC*-MHD modeling was used to optimize the OMEGA MagLIF design

A pulse length of 1.5 ns and a fuel density above 1.5 mg/cm³ gives the maximum yield within the constraint of CR < 30.

TC13141

Magnetic field and preheat reduce convergence ratio and implosion speed and provide a more stable cylindrical implosion

A minimum preheat temperature of 100 eV is required for a significant increase in neutron yield for any shell thickness and magnetic field at a CR < 30

LILAC MHD results

B ₀ (T)	Τ ₀ (eV)	$\left< {m{ au}_{m{i}}} ight angle_{m{N}}$ (keV)	Y _N (×10 ¹⁰ /mm)	CR
0	0	1.24	0.393	49
0	100	1.37	0.528	37
10	100	2.27	3.560	30
10	200	2.28	3.360	26

Higher magnetic fields will be explored in future experiments.

TC12795a

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design

• Preheat experiments

- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

The preheat experiments measured LEH window transmission and gas heating using a single OMEGA beam

ROCHESTER

TC12451b

Foil transmission exceeds 50% with no backscatter from the gas and less than 10% sidescatter of transmitted light

Backscatter from foils and from full targets are very similar and contain a negligible amount of the laser energy.

TC12456b

X-ray measurements of the LEH window disassembly is in good agreement relative to shot-to-shot variation with the 2-D hydrodynamics code FLASH*

• Output from the FLASH code is post-processed using Spect3D atomic modeling to generate simulated filtered x-ray diode traces

*B. Fryxell et al., Astrophys. J. Suppl. Ser. 131, 273 (2000).

Analysis of soft x rays from the side window infer a minimum possible gas temperature of 100 eV at 1.3 ns into the laser pulse

The minimum preheat requirement can be routinely achieved.

SXR: soft x-ray framing camera

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

Implosion-only experiments were used to optimize the beam pointing and balance between normal and oblique beams

X-ray self-emission images show that obtaining a uniform implosion over the maximum length requires reduced energy in the normal beams

Time-integrated x-ray pinhole lineouts demonstrate that thinner shells provide a more uniform core

- For a thinner shell with the same nominal drive, the core emission becomes longer and flatter
- This suggests that a faster implosion is needed at the OMEGA scale to mitigate end losses

Kochester

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

The first integrated MagLIF experiments scanned preheat beam timing

- The optimum preheat timing appears to be around 1 ns before the drive beams, in agreement with simulations
 - must repeat 1.3-ns shots because of poor implosion quality

Yield enhancement from both preheat and magnetic field, and preheat only match closely with simulation predictions

Improvements in target fabrication have increased yields of implosion-only shots

November 2015	July 2016	September 2016	
	Highest yields		
7.49 × 10 ⁷	7.65 × 10 ⁸	1.04 × 10 ⁹	

The MagLIF platform is continuing to develop and improve.

- Introduction to MagLIF/Motivation
- OMEGA-scale MagLIF point design
- Preheat experiments
- Implosion-optimization experiments
- Integrated-MagLIF implosions on OMEGA
- Future projects

Measurements of axial magnetic-field compression will be made next week

 Probing magnetic-field advection within the hot spot will validate MHD simulations and the inclusion of the Nernst effect

*M. G. Haines, Plasma Phys. Control. Fusion 28 1705 (1986).

Experiments to explore the MagLIF parameter space are scheduled over the next year

- B-field scan
 - optimum B field is a key question for MagLIF
 - scaling with B field to study Nernst effect
 - experiment with new techniques to reach higher fields
- Fill-density scan
 - determine highest achievable convergence ratio
- Shell-thickness scan
 - determine minimum thickness possible
 - laser-driven MagLIF has the ability to use thinner shells with higher implosion velocities because of ablative stabilization of the Rayleigh–Taylor instability

Summary/Conclusions

Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA is providing the first experimental data on scaling

- A point design for MagLIF on OMEGA was developed using 1-D and 2-D magnetohydrodynamic (MHD) simulations
- Focused experiments for separately optimizing preheating and implosion uniformity demonstrated the viability of the point design
- Preliminary integrated MagLIF experiments show an increase in neutron yield with preheating and magnetization

Laser-driven MagLIF will accelerate progress of MagLIF on Z.

