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Summary

The sensitivity of OMEGA cryogenic implosions to various sources  
of low-mode asymmetry is being studied with 3-D HYDRA* simulations

• Current parameter studies examine single-perturbation source effects on yield  
and other observables; studied here

– target offset
– beam-to-beam laser-energy imbalance during the main drive pulse
– ice roughness (in progress)

• Yields are more degraded and inferred hot-spot temperatures** show larger 
variation from target offset than laser-energy imbalance (at typical OMEGA levels)

• These sources of nonuniformity generally result in predominate , = 1 modes
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 * M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).
 ** F. Weilacher and P. B. Radha, “Modeling Neutron Based Diagnostics in ICF Implosions,” in preparation for Nuclear Fusion.

Our goal is to understand laser/target requirements for OMEGA cryo implosions.
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Three-dimensional HYDRA studies were performed for OMEGA shot 78416
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CR = convergence ratio
P*  = peak, neutron-weighted hot-spot pressure (not time-averaged)
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Simulation details

• 3-D simulations resolved modes up to , = 10

• A variable flux limiter was used to match shell and shock trajectories 
in 1-D to LILAC simulations with cross-beam energy transfer (CBET)* 
and nonlocal heat conduction

• Modeled perturbation sources were parametrically varied,  
not based on experimental measurements

– beam-to-beam energy imbalance done randomly  
with Gaussian distribution
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 * Igumenshchev, et al., Phys Plasmas 17, 122708 (2010).
  J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014.
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Illumination nonuniformity is calculated on the hard-sphere capsule surface 
and deposited as spherical harmonics
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 * Illumination shown is for 12% rms beam-to-beam laser-energy imbalance;  
  beam overlap reduces illumination vrms to 2.4%.
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Beam-to-beam laser-energy imbalance was studied varying both picket 
imbalance and main pulse imbalance independently
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Time (ns)

OMEGA energy imbalance is different 
during the pickets and main pulse

12%-rms picket and main
energy imbalance, CR = 22

Main-pulse energy
imbalance
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Picket energy balance appears to have only a small affect  
on target performance (no target offset included)
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Picket energy imbalance = small total energy imbalance
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Typical OMEGA target offsets may reduce  
the neutron yield by a factor of >50%
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Inferred hot-spot temperature exhibits more sensitivity  
to target offset than to beam-to-beam energy imbalance 
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  nTOF: neutron time-of-flight
  MRS: magnetic recoil spectrometer 
 * F. Weilacher and P. B. Radha, “Modeling Neutron Based Diagnostics 
  in ICF Implosions,” in preparation for Nuclear Fusion.

We are currently processing variations 
in Ti along different lines of sight*



Laser-energy imbalance and target offset generally  
lead to dominant , = 1 modes
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Areal density versus angle at stagnation*
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Summary/Conclusions

The sensitivity of OMEGA cryogenic implosions to various sources  
of low-mode asymmetry is being studied with 3-D HYDRA* simulations

 * M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).
 ** F. Weilacher and P. B. Radha, “Modeling Neutron Based Diagnostics in ICF Implosions,” in preparation for Nuclear Fusion.

Our goal is to understand laser/target requirements for OMEGA cryo implosions.

• Current parameter studies examine single-perturbation source effects on yield  
and other observables; studied here

– target offset
– beam-to-beam laser-energy imbalance during the main drive pulse
– ice roughness (in progress)

• Yields are more degraded and inferred hot-spot temperatures** show larger 
variation from target offset than laser-energy imbalance (at typical OMEGA levels)

• These sources of nonuniformity generally result in predominate , = 1 modes


