Three-Dimensional Analysis of the Effects of Low-Mode Asymmetries on OMEGA

- Density (g/cm^3)
 - 150
 - 100

58th Annual Meeting of the **American Physical Society Division of Plasma Physics** San Jose, CA 31 October-4 November 2016

Summarv

The sensitivity of OMEGA cryogenic implosions to various sources of low-mode asymmetry is being studied with 3-D HYDRA* simulations

- Current parameter studies examine single-perturbation source effects on yield and other observables; studied here
 - target offset
 - beam-to-beam laser-energy imbalance during the main drive pulse
 - ice roughness (in progress)
- Yields are more degraded and inferred hot-spot temperatures** show larger variation from target offset than laser-energy imbalance (at typical OMEGA levels)
- These sources of nonuniformity generally result in predominate $\ell = 1$ modes

Our goal is to understand laser/target requirements for OMEGA cryo implosions.

^{*}M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).

^{**} F. Weilacher and P. B. Radha, "Modeling Neutron Based Diagnostics in ICF Implosions," in preparation for Nuclear Fusion.

Collaborators

P. W. McKenty, A. Shvydky, J. P. Knauer, T. J. B. Collins, P. B. Radha, and F. Weilacher*

University of Rochester Laboratory for Laser Energetics

M. M. Marinak Lawrence Livermore National Laboratory

*also California Institute of Technology

Three-dimensional HYDRA studies were performed for OMEGA shot 78416

CR = convergence ratio

P^{*} = peak, neutron-weighted hot-spot pressure (not time-averaged)

	26 kJ
t	3
/ s)	3.5 × 10 ⁷
R _{hs}	22
כ	$1.4 imes 10^{14}$
р	$3.4 imes 10^{13}$
ar)	106
oar)	45

- 3-D simulations resolved modes up to $\ell = 10$
- A variable flux limiter was used to match shell and shock trajectories in 1-D to LILAC simulations with cross-beam energy transfer (CBET)* and nonlocal heat conduction
- Modeled perturbation sources were parametrically varied, not based on experimental measurements
 - beam-to-beam energy imbalance done randomly with Gaussian distribution

^{*} Igumenshchev, et al., Phys Plasmas 17, 122708 (2010).

J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption Conference, Estes Park, CO, 8–13 June 2014.

Illumination nonuniformity is calculated on the hard-sphere capsule surface and deposited as spherical harmonics

*Illumination shown is for 12% rms beam-to-beam laser-energy imbalance; beam overlap reduces illumination $\sigma_{\rm rms}$ to 2.4%.

$\blacksquare m = 0$ ■ *m* = 1 **■** *m* = 2 $\mathbf{m} = \mathbf{m} = \mathbf{3}$ **■** *m* = 4 $\mathbf{m} = \mathbf{m} = \mathbf{5}$ $\square m = 6$ **m** = **7** $\square m = 8$ $\square m = 9$ ■ *m* = 10 9 10 8

Beam-to-beam laser-energy imbalance was studied varying both picket imbalance and main pulse imbalance independently

Kochester

TC13156

CR = convergence ratio

Picket energy balance appears to have only a small affect on target performance (no target offset included)

Picket energy imbalance = small total energy imbalance

Typical OMEGA target offsets may reduce the neutron yield by a factor of >50%

Inferred hot-spot temperature exhibits more sensitivity to target offset than to beam-to-beam energy imbalance

Laser-energy imbalance and target offset generally lead to dominant $\ell = 1$ modes

*12% rms beam-to-beam laser-energy imbalance

The sensitivity of OMEGA cryogenic implosions to various sources of low-mode asymmetry is being studied with 3-D HYDRA* simulations

- Current parameter studies examine single-perturbation source effects on yield and other observables; studied here
 - target offset
 - beam-to-beam laser-energy imbalance during the main drive pulse
 - ice roughness (in progress)
- Yields are more degraded and inferred hot-spot temperatures** show larger variation from target offset than laser-energy imbalance (at typical OMEGA levels)
- These sources of nonuniformity generally result in predominate $\ell = 1$ modes

Our goal is to understand laser/target requirements for OMEGA cryo implosions.

^{*}M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001).

^{**} F. Weilacher and P. B. Radha, "Modeling Neutron Based Diagnostics in ICF Implosions," in preparation for Nuclear Fusion.