Self-Consistent Calculation of Half-Harmonic Emission Generated by the Two-Plasmon–Decay Instability

\[|E_T(\theta, \Delta f)|^2 \]

Emission angle \(\theta \)

- 1°
- 5°
- 8°
- 10°

\(\omega_0/2 \) emission generated by linear mode conversion of two-plasmon–decay plasma waves

Arbitrary units \((\times 10^{-6}) \)

\(\Delta f \) (THz)

Red → Blue

J. Zhang
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

Half-harmonic emission generated by two-plasmon decay (TPD) is calculated with a new code—EMZAK

• Half-harmonic emission is an important experimental observable of TPD*
• Reduced and driven Zakharov equations** are expanded to include transverse fields
• For small scattering angles, linear and nonlinear conversion dominates at the red shift; for large scattering angles, nonlinear conversion and Thomson down-scattering (TDS) dominates at the blue shift

Collaborators

J. F. Myatt, R. W. Short, and A. V. Maximov
University of Rochester
Laboratory for Laser Energetics

D. F. DuBois and D. A. Russell
Lodestar Research Corporation

H. X. Vu
Unaffiliated
EMZAK is used to simulate three competing half-harmonic–generation mechanisms driven by TPD

- Electromagnetic (EM) Zakharov equations† in 2-D
 - here $E = E_L + E_T$ contains both longitudinal and transverse components
 - δN static density inhomogeneity
 - δn evolving density fluctuation

\[
\begin{align*}
2i\omega p e_0 (D_t + \nu_e) + 3V^2 e_0 (\nabla \cdot \nabla) - c^2 \nabla \times \nabla \times - \frac{4\pi e^2}{m_e} (\delta n + \delta N) \bigg] E &= \\
\frac{e}{4m_e} \left[\nabla (\bar{E}_0 \cdot \bar{E}^*) - (\nabla \cdot \bar{E}^*) \bar{E}_0 \right] e^{-i\omega t} + S_E
\end{align*}
\]

TPD (longitudinal part), TDS (transverse part)

\[
[D^2_t + 2\nu_i \cdot D_t - c_s^2 \nabla^2] \delta n = \frac{\nabla \cdot |E|^2}{16\pi m_i} + \frac{1}{4} \frac{\nabla \cdot |E_0|^2}{16\pi m_i}
\]

D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001);
Linear-mode conversion is the inverse of the more-familiar resonant absorption

- Mode conversion is illustrated from a plane incident Langmuir wave (LW)

\[
\eta = \frac{\left| E_{\text{converted}} \right|^2}{\left| E_{\text{total}} \right|^2}
\]

\[q = (\omega L/c)^{2/3} \sin^2(\theta_0) \]

When TPD is the source of Langmuir waves, Langmuir-decay instability (LDI) and density-profile modification create more possibilities for half-harmonic emission generation.

Energy spectrum of longitudinal field $|E_L(k_x,k_y)|^2$ averaged over 10 ps

$E_L(x,\omega)$

Expected LW turning point as function of $\Delta\omega$

$\Delta\omega/\omega_0$

$\nabla n_e \rightarrow x (\mu m)$

Quarter-critical density

$n_e/n_c = n_{e0} (1 + x/L)$
Linear-mode conversion has a strong dependence on emission angle

\[|E_T(x = 26 \mu m, \theta, \Delta f)|^2 \]

- \(|E_T|^2 \) is the square of the absolute value of the scattered EM wave

\[\Delta f = \Delta \omega / 2\pi \]
\[\Delta \omega = \omega - \omega_0 / 2\pi \]
Linear-mode conversion has a strong dependence on emission angle

\[|E_T(x = 26 \, \mu m, \theta, \Delta f)|^2 \]

- \(|E_T|^2\) is the square of the absolute value of the scattered EM wave

\[\Delta f = \Delta \omega / 2\pi \]
\[\Delta \omega = \omega - \omega_0 / 2\pi \]

Peak emission occurs at \(\theta \leq 5^\circ\) and is red shifted by \(\sim 10\) THz; there is very little emission for \(\theta \gtrsim 8^\circ\)
The nonlinear conversion happened mainly near the turning point of the Langmuir wave

\[E_T(x = 26 \, \mu m, \theta, \Delta f)^2 \]

- Similar amplitude to linear-mode conversion
The nonlinear conversion happened mainly near the turning point of the Langmuir wave

\[|E_T(x = 26 \, \mu m, \theta, \Delta f)|^2 \]

- Similar amplitude to linear-mode conversion

Peak emission occurs again for small angle \(\theta \leq 5^\circ \); a significant blue component persists for \(\theta \geq 10^\circ \).

- We speculate that this is associated with the TPD common wave interacting with ion-acoustic wave (IAW) turbulence
Only plasmons with a similar k vector to that of the laser are able to generate half-harmonic emission through Thomson down-scattering.

For $\theta \geq 10^\circ$, all emissions are blue shifted.
Only plasmons with a similar k vector to that of the laser are able to generate half-harmonic emission through Thomson down-scattering.

For $\theta \geq 10^\circ$, all emissions are blue shifted.
Half-harmonic emission generated by two-plasmon decay (TPD) is calculated with a new code—EMZAK

- Half-harmonic emission is an important experimental observable of TPD*
- Reduced and driven Zakharov equations** are expanded to include transverse fields
- For small scattering angles, linear and nonlinear conversion dominates at the red shift; for large scattering angles, nonlinear conversion and Thomson down-scattering (TDS) dominates at the blue shift

D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001);