Self-Consistent Calculation of Half-Harmonic Emission Generated by the Two-Plasmon–Decay Instability

J. Zhang **University of Rochester** Laboratory for Laser Energetics

$\omega_0/2$ emission generated by linear mode conversion

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Half-harmonic emission generated by two-plasmon decay (TPD) is calculated with a new code—EMZAK

- Half-harmonic emission is an important experimental observable of TPD*
- Reduced and driven Zakharov equations** are expanded to include transverse fields
- For small scattering angles, linear and nonlinear conversion dominates at the red shift; for large scattering angles, nonlinear conversion and Thomson down-scattering (TDS) dominates at the blue shift

^{*}W. Seka et al., Phys. Rev. Lett. <u>112</u>, 145001 (2014). **D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995); D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001); J. Zhang et al., Phys. Rev. Lett. 113, 105001 (2014).

Collaborators

J. F. Myatt, R. W. Short, and A. V. Maximov

University of Rochester Laboratory for Laser Energetics

D. F. DuBois and D. A. Russell

Lodestar Research Corporation

H. X. Vu

Unaffiliated

ROCHESTER

EMZAK is used to simulate three competing half-harmonic–generation mechanisms driven by TPD

- Electromagnetic (EM) Zakharov equations[†] in 2-D
 - here $E = E_L + E_T$ contains both longitudinal and transverse components
 - δN static density inhomogeneity

- δn evolving density fluctuation conversion $\begin{bmatrix} 2i\omega_{\mathsf{pe}_0} \left(D_t + \mathcal{V}_{\mathsf{e}^\circ} \right) + 3V_{\mathsf{te}}^2 \left(\nabla \nabla \cdot \right) - \mathsf{c}^2 \nabla \times \nabla \times - \frac{4\pi \mathsf{e}^2}{m_{\mathsf{e}}} \left(\frac{\delta \mathsf{n}}{\delta \mathsf{n}} + \frac{\delta \mathsf{N}}{\delta \mathsf{N}} \right) \end{bmatrix} \vec{\mathsf{E}} = \frac{\mathsf{e}}{4m_{\mathsf{e}}} \begin{bmatrix} \nabla (\vec{\mathsf{E}}_0 \cdot \vec{\mathsf{E}}^*) - (\nabla \cdot \vec{\mathsf{E}}^*) \vec{\mathsf{E}}_0 \end{bmatrix} \mathsf{e}^{-i\Delta\omega_{\mathsf{i}}t} + \mathsf{S}_{\mathsf{E}} \end{bmatrix} \mathbf{N}$ **TPD** (longitudinal part), **TDS** (transverse part)

$$[D_t^2 + 2\nu_i \circ D_t - c_s^2 \nabla^2] \delta n = \frac{\nabla^2 |E|^2}{16\pi m_i} + \frac{1}{4} \frac{\nabla^2 |E_0|^2}{16\pi m_i}$$

[†]D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. <u>74</u>, 3983 (1995); D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001);

TC11573a

Linear-mode

Nonlinear-mode conversion

J. Zhang et al., Phys. Rev. Lett. 113, 105001 (2014).

Linear-mode conversion is the inverse of the more-familiar resonant absorption

• Mode conversion is illustrated from a plane incident Langmuir wave (LW)

When TPD is the source of Langmuir waves, Langmuir-decay instability (LDI) and density-profile modification create more possibilities for half-harmonic emission generation

Linear-mode conversion has a strong dependence on emission angle

$$|E_{T}(x = 26 \ \mu m, \theta, \Delta f)|^{2}$$

•
$$|E_{\rm T}|^2$$
 is the square of th value of the scattered E

$$\Delta f = \Delta \omega / 2\pi$$
$$\Delta \omega = \omega - \omega_0 / 2$$

TC12540

e absolute EM wave

 2π

Linear-mode conversion has a strong dependence on emission angle

$$|E_{T}(x = 26 \ \mu m, \theta, \Delta f)|^{2}$$

•
$$|E_{\rm T}|^2$$
 is the square of th value of the scattered E

$$\Delta f = \Delta \omega / 2\pi$$
$$\Delta \omega = \omega - \omega_0 / 2$$

Peak emission occurs at $\theta \lesssim 5^{\circ}$ and is red shifted by ~10 THz; there is very little emission for $\theta \gtrsim 8^\circ$

TC12540a

e absolute EM wave

2π

The nonlinear conversion happened mainly near the turning point of the Langmuir wave

• Similar amplitude to linear-mode conversion

The nonlinear conversion happened mainly near the turning point of the Langmuir wave

• Similar amplitude to linear-mode conversion

Peak emission occurs again for small angle $\theta \leq 5^{\circ}$; a significant blue component persists for $\theta \gtrsim 10^{\circ}$.

 We speculate that this is associated with the TPD common wave interacting with ion-acoustic wave (IAW) turbulence

TC12541a

Only plasmons with a similar k vector to that of the laser are able to generate half-harmonic emission through Thomson down-scattering

Kochester

Only plasmons with a similar k vector to that of the laser are able to generate half-harmonic emission through Thomson down-scattering

TC12542a ROCHESTER

Half-harmonic emission generated by two-plasmon decay (TPD) is calculated with a new code—EMZAK

- Half-harmonic emission is an important experimental observable of TPD*
- Reduced and driven Zakharov equations** are expanded to include transverse fields
- For small scattering angles, linear and nonlinear conversion dominates at the red shift; for large scattering angles, nonlinear conversion and Thomson down-scattering (TDS) dominates at the blue shift

^{*}W. Seka et al., Phys. Rev. Lett. <u>112</u>, 145001 (2014). **D. F. DuBois, D. A. Russell, and H. A. Rose, Phys. Rev. Lett. 74, 3983 (1995); D. A. Russel and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001); J. Zhang et al., Phys. Rev. Lett. 113, 105001 (2014).