Three-Dimensional Single-Mode Nonlinear Ablative Rayleigh–Taylor Instability

3-D single-mode Rayleigh–Taylor bubble velocity for $\lambda = 10 \ \mu m$

R. Yan **University of Rochester** Laboratory for Laser Energetics

ROCHESTER

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

Three-dimensional simulations show that the bubble growth in the ablative **Rayleigh–Taylor instability (RTI) is faster than classical RTI predictions** FSC

- The single-mode bubble velocity in 3-D is faster than in 2-D
- No saturation is found for the 3-D ablative RTI bubble velocity, while the 2-D bubble velocity saturates above the classical value
- Vorticity accumulation inside the bubble caused by mass ablation accelerates the bubble to velocities well above the classical value

TC12407

Collaborators

R. Betti

University of Rochester Laboratory for Laser Energetics

J. Sanz

E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid

B. Liu and A. Frank

University of Rochester Department of Physics and Astronomy

Ablation can stabilize RTI in the linear regime but can also cause **RTI to grow faster in the nonlinear regime**

Ablative Rayleigh–Taylor (RT) growth rate* $\gamma_{DT} = 0.94 \sqrt{kg}$ –(2.7 kV_{abl}) Linear: 1.8 **Heavy fluid** $\lambda = 7 \,\mu m$ F_c Nonlinear: Uabl 2-D/Uclas 2-D = 10 µm g 1.4 $\Omega = \omega/2$ **Bubble** 0.6 1.0 Vortex $\hat{R} = \lambda/2$ 2 3 $x = -\lambda/2$ **x** = **0** Time (ns)

In the ablative RTI, the acceleration beyond classical is caused by a vortex inside the bubble.**

* R. Betti et al., Phys. Rev. E 50, 3968 (1994). ** R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006).

TC12408

FSC

Bubble vortex

The ART3D* simulations start from a quasi-equilibrium state relevant to a National Ignition Facility (NIF) target design

- The code ART* has been parallelized and extended to 3-D geometry (**ART3D**)
- ART3D solves the single-fluid equations of motion including Spitzer thermal conduction over a Cartesian grid
- The gravity is dynamically adjusted to keep the interface quasi-stationary

Perturbations 2-D: ~cos(*k*x) **3-D:** \sim **0.5** \times [cos(*kx*) + cos(*ky*)]

FSC

Three-dimensional topology is significantly different from 2-D

ROCHESTER

TC11582a

Unlike in 2-D, the 3-D bubble velocity does not show saturation in the ablative RTI

FSC

*V. N. Goncharov, Phys. Rev. Lett. <u>88</u>, 134502 (2002).

No saturation

The Layzer model* in 3-D is extended by adding vortices inside the bubble FSC

Model including vortices**

$$z = \eta(x, y, t)$$
 Heavy fluid

$$\vec{v}_{\ell} = \nabla \phi_{\ell} + \hat{e}_{z} [\cos(kx) + \cos(ky)] \omega_{0}/k$$

 $\omega_0 \sim v_{abl} k f_k(t)$

Saturated in 2-D Not saturated in 3-D $f_{k}(t)$

Stoady 3-D hubble velocity:

$$U_{b}^{\text{rot 3-D}} = \sqrt{\frac{g(1-r_{d})}{k} + \frac{r_{d}\omega_{0}^{2}}{k^{2}}}$$

$$r_{d} = \rho_{\ell}/\rho_{h}$$
Classical Vortex

* D. Layzer, Astrophys. J. <u>122</u>, 1 (1955).

** R. Betti and J. Sanz, Phys. Rev. Lett. 97, 205002 (2006).

The modified Layzer model shows good agreement with the 3-D simulation results

$$\boldsymbol{U}_{b}^{\text{rot 3-D}} = \sqrt{\boldsymbol{g}(1-\boldsymbol{r}_{d})}/\boldsymbol{k}+\boldsymbol{r}_{d}\boldsymbol{\omega}$$

$$U_{b}^{clas 3-D} = \sqrt{g(1-r_{d})/k}$$

 g, ω_0 , and r_d are taken from the simulation

TC12412

FSC

The vorticity near the bubble tip saturates in 2-D but continues to increase in 3-D FSE

The bubble and the vortex inside the bubble become distorted in the highly nonlinear phase

ROCHESTER MELIORA S

The bubble acceleration is stronger for shorter wavelengths and does not show saturation

FSC

Summary/Conclusions

Three-dimensional simulations show that the bubble growth in the ablative **Rayleigh–Taylor instability (RTI) is faster than classical RTI predictions** FSC

- The single-mode bubble velocity in 3-D is faster than in 2-D
- No saturation is found for the 3-D ablative RTI bubble velocity, while the 2-D bubble velocity saturates above the classical value
- Vorticity accumulation inside the bubble caused by mass ablation accelerates the bubble to velocities well above the classical value

TC12407

