Three-Dimensional Simulations of the Deceleration Phase of Inertial Fusion Implosions Using DEC3D

K. M. Woo **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

The radiation-hydrocode *DEC3D* was developed to study the deceleration-phase Rayleigh–Taylor instability

- The 3-D code uses a second-order Riemann solver on a moving mesh and is fully parallelized by domain decomposition
- The yield degradation in 3-D versus 2-D single-mode simulations is compared and a reduction by about 10% in neutron yield is observed in 3-D single-mode simulations

Collaborators

R. Betti, A. Bose, R. Epstein, J. A. Delettrez, K. S. Anderson, R. Yan, P.-Y. Chang, J. R. Davies, and M. Charissis

> University of Rochester Laboratory for Laser Energetics

DEC3D is a fully parallelized 3-D radiation hydrocode used to study the deceleration phase of implosions

Mesh

- Shrinking Cartesian mesh
- Parallelized by domain decomposition

Hydrodynamics

• HLLC (Harten-Lax-van Leer-contact) second-order approximate Riemann solver

Thermal

• Red–black SOR (successive over relaxation) iteration for implicit thermal diffusion

Radiation

- Multigroup radiation transport*
- Tabular opacities

Alpha

One-group alpha transport**

^{*}K. M. Woo et al., Bull. Am. Phys. Soc. <u>59</u>, 354 (2014). **K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. 46, 280 (2001).

Velocity perturbation is applied at the beginning of the deceleration phase to study the Rayleigh–Taylor (RT) instability

The Rayleigh–Taylor instability during the deceleration phase is modeled by *DEC3D*

Hydrodynamics, thermal conduction, and radiation transport have been validated against 1-D LILAC

 $\dot{\gamma}^{DEC3D}$ versus $\dot{\gamma}^{LILAC}$ at stagnation

ROCHESTER

Single-mode Rayleigh–Taylor perturbation growth rates are compared to benchmark 3-D with 2-D simulations

 Simulated linear growth rates are consistent with theories* for converging targets in the deceleration phase

TC12610

*R. Epstein, Phys. Plasmas 11, 5114 (2004).

Nonlinear Rayleigh-Taylor growth leads to a thinner shell wall in 3-D than 2-D

An ~10% reduction in neutron yield is observed in 3-D versus 2-D single-mode simulations

 Two types of 3-D initial perturbations are investigated to eliminate the possibility of design-dependence on the yield degradation

An ~15% reduction in neutron yield is observed in 3-D versus 2-D multimode simulations

The radiation-hydrocode *DEC3D* was developed to study the deceleration-phase Rayleigh–Taylor instability

- The 3-D code uses a second-order Riemann solver on a moving mesh and is fully parallelized by domain decomposition
- The yield degradation in 3-D versus 2-D single-mode simulations is compared and a reduction by about 10% in neutron yield is observed in 3-D single-mode simulations

Appendix

DEC3D is a fully parallelized 3-D radiation hydrocode to study the implosions of the deceleration phase

ROCHESTER