Three-Dimensional Modeling of Laser–Plasma Interactions Near the Quarter-Critical Density in Plasmas

H. Wen

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

Fast-electron distributions generated by parametric instabilities near quarter-critical density have been calculated in 3-D and 2-D particle-in-cell (PIC) simulations

- In 3-D PIC simulations, the evolution of two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) has been characterized
- The periodic boundary condition is important for modeling the growth of SBS but not as important for modeling the growth of SRS
- Fast electrons are accelerated mainly by the TPD-generated plasma waves
- The fast-electron energy distribution and angular distribution depend on the shapes of laser speckles

Collaborators

A. V. Maximov, R. Yan, C. Ren, J. Li, and J. F. Myatt

University of Rochester Laboratory for Laser Energetics

PIC simulations have been performed for direct-drive inertial confinement fusion (ICF)-related parameters

- Physical parameters (plane wave)
 - scale length $L_n = 100 \ \mu m$
 - intensity $I = 9 \times 10^{14} \, \text{W/cm}^2$
 - CH plasma, temperature $T_e = 2$ keV, $T_i = 1$ keV
 - laser propagates along the x axis
 - linear density profile from 0.21 to 0.26 $n_{\rm c}$
 - $-\eta = 1.9^{*}$
- Numerical parameters
 - simulation box size: $400 \times 150 \times 120 \text{ c}/\omega_0$ $(21 \times 8.4 \times 6.7 \ \mu m)$ for the 3-D simulation

*A. Simon et al., Phys. Fluids 26, 3107 (1983).

The growth rates of TPD in 2-D and 3-D simulations are in agreement with linear theory

- The growth rates are obtained by integrating the E_x spectrum over k_x
- The growth rates of absolute modes with small k_v are in agreement with linear theory

TC12552

In the early stage of 3-D PIC simulations, the growth of TPD and SRS is consistent with theoretical results

E_V (SRS, SBS, laser)

*C. S. Liu et al., Phys. Fluids 17, 1211 (1974). **A. Simon et al., Phys. Fluids 26, 3107 (1983).

The modeling of absolute SBS growth depends on the transverse **boundary conditions**

ROCHESTER

Fast-electron generation has been studied in 3-D and 2-D PIC simulations for different laser-speckle shapes

- *R* = peak intensity/average intensity
- Parameters (laser speckles)
 - $-L_{\rm n} = 100 \ \mu {\rm m}$
 - average $I = 9 \times 10^{14} \, \text{W/cm}^2$

– same transverse size (8 μ m)

Laser-speckle shape	Net energ forv
2-D plane wave	
2-D speckle <i>R</i> = 2	-
2-D speckle <i>R</i> = 5	
2-D speckle <i>R</i> = 8	2
3-D speckle <i>R</i> = 2	

TC12555

The acceleration of electrons caused by TPD leads to a characteristic angular distribution

• Normalized angular distribution of hot electrons crossing the right boundary

TC12556

Fast-electron energy distributions have similar temperatures in 3-D and 2-D PIC simulations

 $\eta = 1.9$

 $\eta = 1.3$

 $*\eta = 1.9$; $**\eta_{av} = 1.3$; ***Fitting between 55 keV and 150 keV

Summary/Conclusions

Fast-electron distributions generated by parametric instabilities near quarter-critical density have been calculated in 3-D and 2-D particle-in-cell (PIC) simulations

- In 3-D PIC simulations, the evolution of two-plasmon decay (TPD), stimulated Raman scattering (SRS), and stimulated Brillouin scattering (SBS) has been characterized
- The periodic boundary condition is important for modeling the growth of SBS but not as important for modeling the growth of SRS
- Fast electrons are accelerated mainly by the TPD-generated plasma waves
- The fast-electron energy distribution and angular distribution depend on the shapes of laser speckles

