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Summary
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• In 3-D PIC simulations, the evolution of two-plasmon decay (TPD), stimulated Raman 
scattering (SRS), and stimulated Brillouin scattering (SBS) has been characterized

• The periodic boundary condition is important for modeling the growth of SBS 
but not as important for modeling the growth of SRS

• Fast electrons are accelerated mainly by the TPD-generated plasma waves

• The fast-electron energy distribution and angular distribution depend 
on the shapes of laser speckles

TC12551

Fast-electron distributions generated by parametric instabilities 
near quarter-critical density have been calculated in 3-D and 2-D 
particle-in-cell (PIC) simulations
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PIC simulations have been performed for direct-drive inertial confinement 
fusion (ICF)–related parameters

• Physical parameters (plane wave)

– scale length Ln = 100 nm 
– intensity I = 9 × 1014 W/cm2

– CH plasma, temperature Te = 2 keV, Ti = 1 keV
– laser propagates along the x axis
– linear density profile from 0.21 to 0.26 nc
– h = 1.9*

• Numerical parameters
– simulation box size: 400 × 150 × 120 c/~0 

(21 × 8.4 × 6.7 nm) for the 3-D simulation
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*A. Simon et al., Phys. Fluids 26, 3107 (1983).

2-D simulations 
are in the x–y plane
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The growth rates of TPD in 2-D and 3-D simulations are in agreement 
with linear theory

• The growth rates are obtained by integrating the Ex spectrum over kx
• The growth rates of absolute modes with small ky are in agreement 

with linear theory
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*A. Simon et al., Phys. Fluids 26, 3107 (1983).
**B. Afeyan et al.,  Phys. Rev. Lett. 75, 4218 (1995).

kTPD,1

k0

z

y

x
kTPD, 2

0.0 0.5 1.0 1.5
0

2

4

6

8

kyYk0

G
ro

w
th

 r
at

eY
~

0 
(#

10
−

4 )

2-D in-plane
3-D kz = 0
TPD theory*
High frequency hybrid 
instability (HFHI) theory**



Electric field

E
n

er
g

y
(n

o
rm

al
iz

ed
)

1.00

0.10

Time (ps)
6420

Magnetic field

E
n

er
g

y
(n

o
rm

al
iz

ed
)

0.10

0.01

1.00

Ex (TPD and SRS)
Ey (SRS, SBS, laser)
TPD growth rate**

Bx (SRS and SBS)
Bz (laser)
SRS growth rate*

kTPD,1

k0

kTPD,2

z

y

x

kSRS,1

k0

kSRS,2

z

y

x

TC12553

In the early stage of 3-D PIC simulations, the growth of TPD and SRS 
is consistent with theoretical results
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*C. S. Liu et al.,  Phys. Fluids 17, 1211  (1974). 
**A. Simon et al., Phys. Fluids 26, 3107 (1983).
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The modeling of absolute SBS growth depends on the transverse 
boundary conditions
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*C. S. Liu et al., Phys. Fluids 17, 1211 (1974). 
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• The green line was obtained assuming /E E E 2total 0 0~ ~= +^ ^h h
• The angular spread of scattered light is smaller for SBS than for SRS
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Fast-electron generation has been studied in 3-D and 2-D PIC simulations 
for different laser-speckle shapes

• R = peak intensityYaverage intensity

• Parameters (laser speckles)

– Ln = 100 nm
– average I = 9 × 1014 W/cm2

– Te = 3 keV, Ti = 1.5 keV
– same transverse size (8 nm)
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Laser-speckle shape
Net fast electrons

energy fluxYlaser flux
forwardYbackward

2-D plane wave 5.2%Y4.4%

2-D speckle R = 2 10.2%Y4.4%

2-D speckle R = 5 17.1%Y4.2%

2-D speckle R = 8 25.6%Y6.2%

3-D speckle R = 2 4.9%Y4.5%
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The acceleration of electrons caused by TPD leads to a characteristic 
angular distribution

• Normalized angular distribution of hot electrons crossing the right boundary
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Fast-electron energy distributions have similar temperatures 
in 3-D and 2-D PIC simulations
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*h = 1.9; **hav = 1.3; ***Fitting between 55 keV and 150 keV

3-D plane wave 3-D speckle 
R = 2

2-D in-plane 
R = 2

2-D in-plane
R = 5

Temperature*** 62 keV 56 keV 62 keV 31 keV

• The distributions 
of fast electrons crossing 
the right boundary
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Summary/Conclusions
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Fast-electron distributions generated by parametric instabilities 
near quarter-critical density have been calculated in 3-D and 2-D 
particle-in-cell (PIC) simulations

• In 3-D PIC simulations, the evolution of two-plasmon decay (TPD), stimulated Raman 
scattering (SRS), and stimulated Brillouin scattering (SBS) has been characterized

• The periodic boundary condition is important for modeling the growth of SBS 
but not as important for modeling the growth of SRS

• Fast electrons are accelerated mainly by the TPD-generated plasma waves

• The fast-electron energy distribution and angular distribution depend 
on the shapes of laser speckles


