Spectroscopy of Neutrons Generated Through Nuclear Reactions in Short-Pulse Laser Experiments

Summary

A nuclear physics platform using laser-generated light ions is being developed at the Laboratory for Laser Energetics (LLE)

- An energetic deuteron flow ($E_k = 2$ to 5 MeV) is created off the back surface of a primary target irradiated by a short-pulse laser (E = 1.25 keV, $\tau = 10$ ps)
- Studies of d–d fusion, d–⁹Be fusion processes show the expected neutron spectra
- First experiments looking at the Be⁹(d, t) Be⁸ neutron pickup reaction show no signature of triton production

Collaborators

C. J. Forrest, V. Yu. Glebov, and T. C. Sangster

University of Rochester Laboratory for Laser Energetics

W. U. Schröder and E. Henry

University of Rochester Department of Chemistry

The nSpec Laboratory Basic Science (LBS) proposal studies neutron production in laser-driven, light-ion reactions

Primary target (CD) Secondary target n₀ P+D+

The short-pulse laser generates high-energy protons and deuterons off the primary target; nuclear reactions create neutrons in the secondary target

- CD, Be, and layered CD/Be secondary targets were used to study these reactions:
 - **1.** $Be^{9}(d, t)^{8}Be$ neutron pickup
 - **2.** Be^{9} (d, n) ¹⁰B fusion/neutron stripping
 - **3.** d (d, ³He) n fusion
 - **4.** d (t, α)n fusion as secondary reaction to process 1

The cross sections for the deuteron reactions are comparable in the >1-MeV energy range

- The Be⁹ (d, t) ⁸Be reaction has a positive Q value of ~4.5 MeV
- The Be⁹ (d, n) $^{10}\text{B}\,$ reaction has a positive Q value of ${\sim}4.3~\text{MeV}$
- The d (d, ³He) n reaction has a positive Q value of ~3.3 MeV
- The d (t, α) n reaction has a positive Q value of ~17.6 MeV

Three neutron time-of-flight (nTOF) detectors are installed on OMEGA EP at different angles to the laser direction

*TCC: target chamber center

Two different secondary targets, a CD cylinder, and a stack of alternating **CD** and **Be** foils, were used

- A small (100-J) UV pulse fired 0.5 ns before the short pulse was used to suppress p–n reactions off the front side of the target
- The calculated range of an ~5-MeV deuteron is ~100 μ m in beryllium
- The Be and CD foils in the stack had a thickness of 25 μ m

The spectrum of the ion flow off the backside of the primary target was measured using an ion spectrometer

- The high-energy end point of the ion spectrum is a strong function of the laser intensity
- The laser intensity was varied by up to a factor of 10 during the experiments

The nTOF spectrum changes significantly with the different secondary targets

The neutron spectrum from the 25- μ m CD/25- μ m Be layered target shows DD and dBe neutrons

- The kinematic shift of the DD neutrons indicate a deuteron energy of ~2 to 4 MeV; the shifts of the DBe neutrons are consistent with a deuteron energy of 1 to 2 MeV
- No secondary DT fusion neutrons are seen from the Be⁹ (d, t) ⁸Be neutron pickup reaction

Summary/Conclusions

A nuclear physics platform using laser-generated light ions is being developed at the Laboratory for Laser Energetics (LLE)

- An energetic deuteron flow ($E_k = 2$ to 5 MeV) is created off the back surface of a primary target irradiated by a short-pulse laser (E = 1.25 keV, $\tau = 10$ ps)
- Studies of d–d fusion, d–⁹Be fusion processes show the expected neutron spectra
- First experiments looking at the Be⁹(d, t) Be⁸ neutron pickup reaction show no signature of triton production

