X-Ray Spectroscopy of Rapidly Heated Buried-Aluminum Layers

Buried layer: 0.2 μm
Laser: 10 J, 1 ps
Intensity: >10^{18} W/cm^2
Frequency: 1ω or 2ω

CH tamper: 2 μm
Electrons

Photon energy (eV)

Time (ps)

0 50 100

50 100 150

ADU

150

0

Li-like Al
Al He_α

Δt = 16 ps

C. R. Stillman
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

Heating of a buried aluminum tracer layer was measured with ultrafast x-ray spectroscopy

- High-density and high-temperature plasma properties are important for understanding the radiative properties of stellar interiors and off-Hugoniot equations of state (EOS)
- High-intensity, short-pulse laser interactions have been used to produce hot plasmas at near-solid density
- The plasma conditions are inferred by fitting synthetic x-ray spectra from a collisional-radiative atomic physics model to the measured data

A buried aluminum layer was heated to above 300 eV at 1.8 g/cm³ with a 10-J, 1-ps pulse.
Collaborators

P. M. Nilson, S. Ivancic, C. Mileham, and D. H. Froula
University of Rochester
Laboratory for Laser Energetics

D. D. Meyerhofer
Los Alamos National Laboratory

M. E. Martin and R. A. London
Lawrence Livermore National Laboratory
Dense, high-temperature plasmas are required for stellar physics and radiative properties experiments

- Uncertainties exist in the radiative material properties of astrophysical plasmas
 - e.g., mean opacity of solar interior matter*
- New techniques are sought for testing
 - plasma-dependent atomic processes
 - nonequilibrium atomic kinetics
 - plasma opacity** and EOS models***

High-intensity, short-pulse lasers can heat solid matter above 500 eV.

An experimental platform is being developed to study heating of near-solid density matter by laser-generated hot electrons.

- The target is plastic and contains a buried spectroscopic tracer layer*.
- Our initial studies have used Al.
- Future experiments will use Fe.
- The buried layer heats through collisional dissipation of a resistive return current.
- The buried-layer emission is studied with an ultrafast streaked x-ray spectrometer.

The data are compared to simulated spectra to infer the plasma conditions.

**D. J. Hoarty et al., High Energy Density Phys. 9, 661 (2013).
A focusing, time-resolved Von Hamos spectrometer measures He$_\alpha$ emission from the buried layer

- Conically curved focusing* KAP crystal
- Spectral range \pm90 eV around Al He$_\alpha$
- Spectral resolution $E/\Delta E \sim 750$
- Temporal resolution ~ 2 ps

The first experiments used 1ω light and plastic targets containing a buried aluminum tracer layer.

- Laser conditions
 - 10 J, 0.7 ps
 - intensity $>10^{18}$ W/cm2

- Target parameters
 - 100-μm-diam, 0.2-μm-thick Al
 - 2-μm CH tamper

- The thermal flash duration is 16 ps

Previous studies* have shown that the hot-electron equilibration time is below 10 ps.

The conditions in the buried layer were inferred by comparison to a local thermodynamic equilibrium (LTE) collisional-radiative model.

\[T_e = 320 \text{ eV}, \rho = 1.8 \text{ g/cm}^3 \]

Comparison to non-LTE models is underway to investigate the effects of non-equilibrium plasma conditions.

J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).
Summary/Conclusions

Heating of a buried aluminum tracer layer was measured with ultrafast x-ray spectroscopy

- High-density and high-temperature plasma properties are important for understanding the radiative properties of stellar interiors and off-Hugoniot equations of state (EOS)
- High-intensity, short-pulse laser interactions have been used to produce hot plasmas at near-solid density
- The plasma conditions are inferred by fitting synthetic x-ray spectra from a collisional-radiative atomic physics model to the measured data

A buried aluminum layer was heated to above 300 eV at 1.8 g/cm³ with a 10-J, 1-ps pulse.