X-Ray Spectroscopy of Rapidly Heated Buried-Aluminum Layers

ADU

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Heating of a buried aluminum tracer layer was measured with ultrafast x-ray spectroscopy

- High-density and high-temperature plasma properties are important for understanding the radiative properties of stellar interiors and off-Hugoniot equations of state (EOS)
- High-intensity, short-pulse laser interactions have been used to produce hot plasmas at near-solid density
- The plasma conditions are inferred by fitting synthetic x-ray spectra from a collisional-radiative atomic physics model to the measured data

A buried aluminum layer was heated to above 300 eV at 1.8 g/cm³ with a 10-J, 1-ps pulse.

Collaborators

P. M. Nilson, S. Ivancic, C. Mileham, and D. H. Froula University of Rochester

Laboratory for Laser Energetics

D. D. Meyerhofer

Los Alamos National Laboratory

M. E. Martin and R. A. London

Lawrence Livermore National Laboratory

Motivation

Dense, high-temperature plasmas are required for stellar physics and radiative properties experiments

- Uncertainties exist in the radiative material properties of astrophysical plasmas
 - e.g., mean opacity of solar interior matter*
- New techniques are sought for testing
 - plasma-dependent atomic processes
 - nonequilibrium atomic kinetics
 - plasma opacity** and EOS models***

High-intensity, short-pulse lasers can heat solid matter above 500 eV.

^{*}J. E. Bailey et al., Nature 517, 56 (2015).

E24574

^{**}R. A. London and J. I. Castor, High Energy Density Phys. 9, 725 (2013).

^{***}M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. 75, 2586 (2004).

An experimental platform is being developed to study heating of near-solid density matter by laser-generated hot electrons

- The target is plastic and contains a buried spectroscopic tracer layer*,**
 - our initial studies have used AI
 - future experiments will use Fe
- The buried layer heats through collisional dissipation of a resistive return current
- The buried-layer emission is studied with an ultrafast streaked x-ray spectrometer

The data are compared to simulated spectra to infer the plasma conditions.

*C. R. D. Brown et al., Phys. Rev. Lett. 106, 185003 (2011).

***R. A. London and J. I. Castor, High Energy Density Phys. 9, 725 (2013).

E24575

^{**}D. J. Hoarty et al., High Energy Density Phys. 9, 661 (2013).

A focusing, time-resolved Von Hamos spectrometer measures He_{α} emission from the buried layer

*T. A. Hall, J. Phys. E, Sci. Instrum. 17, 110 (1984).

The first experiments used 1 ω light and plastic targets containing a buried aluminum tracer layer

Previous studies* have shown that the hot-electron equilibration time is below 10 ps.

E24577 ROCHESTER

*P. M. Nilson et al., Phys. Rev. Lett. 108, 085002 (2012).

The conditions in the buried layer were inferred by comparison to a local thermodynamic equilibrium (LTE) collisional-radiative model

Comparison to non-LTE models is underway to investigate the effects of non-equilibrium plasma conditions.

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

Heating of a buried aluminum tracer layer was measured with ultrafast x-ray spectroscopy

- High-density and high-temperature plasma properties are important for understanding the radiative properties of stellar interiors and off-Hugoniot equations of state (EOS)
- High-intensity, short-pulse laser interactions have been used to produce hot plasmas at near-solid density
- The plasma conditions are inferred by fitting synthetic x-ray spectra from a collisional-radiative atomic physics model to the measured data

A buried aluminum layer was heated to above 300 eV at 1.8 g/cm³ with a 10-J, 1-ps pulse.

