Modeling Two-Plasmon–Decay Experiments at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

A. A. Solodov
University of Rochester
Laboratory for Laser Energetics

Shot N150520

Hot-electron conversion efficiency

Conversion efficiency (%)

Time (ns)

Laser power (×8 TW)

$T_{\text{hot}} = 40 \text{ keV}$

$T_{\text{hot}} = 50 \text{ keV}$

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

A new planar-target experimental platform was developed to investigate the impact of two-plasmon decay (TPD) in direct-drive (DD)–ignition designs.

- Planar experiments at the National Ignition Facility (NIF) studied the beam angle-of-incidence dependence of TPD.
- A laser-energy conversion efficiency of ~1% into hot electrons with $T_e = 40$ keV to 50 keV was found.
- The beam angle of incidence did not have a strong effect on TPD.
Collaborators

M. J. Rosenberg,¹ J. F. Myatt, R. Epstein,² S. P. Regan, W. Seka, J. Shaw, and M. Hohenberger
University of Rochester
Laboratory for Laser Energetics

J. W. Bates
Naval Research Laboratory

J. D. Moody, J. E. Ralph, D. P. Turnbull, and M. A. Barrios
Lawrence Livermore National Laboratory

¹M. J. Rosenberg et al., NO5.00006, this conference.
²R. Epstein et al., NO5.00008, this conference.
Planar NIF experiments explore TPD in more extreme conditions than OMEGA and current NIF polar-direct-drive experiments

Coronal conditions predicted by DRACO radiation–hydrodynamic simulations

<table>
<thead>
<tr>
<th>Parameters at $n_c/4$ surface</th>
<th>OMEGA*</th>
<th>Current NIF DD**</th>
<th>Ignition NIF DD***</th>
<th>Planar NIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_L (W/cm2)</td>
<td>$<4 \times 10^{14}$</td>
<td>4.5×10^{14}</td>
<td>$8 \text{ to } 10 \times 10^{14}$</td>
<td>$6 \text{ to } 9 \times 10^{14}$</td>
</tr>
<tr>
<td>L_n (μm)</td>
<td>$<350 \mu$m</td>
<td>350μm</td>
<td>600μm</td>
<td>$550 \text{ to } 600 \mu$m</td>
</tr>
<tr>
<td>T_e (keV)</td>
<td><2.5 keV</td>
<td>3.5 keV</td>
<td>5 keV</td>
<td>3.2 keV</td>
</tr>
</tbody>
</table>

Two planar experiments were fielded on the NIF to study the beam angle-of-incidence dependence of TPD.

Shot N150520: 23° and 30° beams (32 beams total)

Shot N150521: 45° and 50° beams (60 beams total)

Post-shot DRACO simulated conditions at $n_c / 4$

The empirical TPD threshold is exceeded in this experimental design: $\eta = I_{14} L_{n14} / (230 T_{e, keV}) \sim 4$ to 5.
Laser-energy-to-hot-electron conversion efficiency and x-ray spectra were computed using Monte Carlo EGSnrc* simulations

- EGSnrc models the hot-electron transport, hard x-ray emission, and Mo K_α fluorescence
- Plasma profiles are taken from DRACO simulations
- Hot electrons are injected
 - at $n_c/4$ surface ($r < 500 \mu m$)
 - isotropic in the forward 2π solid angle
 - temperature $T_{\text{hot}} = 40$ to 50 keV from the hard x-ray spectra

*I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).
Measured and simulated time-integrated hard x-ray spectra compare well

Time-integrated hard x-ray spectra indicate $T_{\text{hot}} = 40$ to 50 keV, consistent with TPD.
Absolute hard x ray and Mo K\(\alpha\) emission levels indicate the laser-energy-to-hot-electron conversion efficiency is \(\sim\)1% in both shots.

- The overall conversion efficiency is 0.5% to 1.0\% \((T_{\text{hot}} = 40\ \text{to}\ 50\ \text{keV})\) in shot N150520 and 0.7% to 1.3% in shot N150521 (during the first 5 ns).

Shot N150520: 23° and 30° beams

- From hard x rays
- From Mo K\(\alpha\)

Shot N150521: 45° and 50° beams

- From hard x rays
- From Mo K\(\alpha\)

\(T_{\text{hot}} = 40\ \text{keV}\) and \(T_{\text{hot}} = 50\ \text{keV}\).

Not DD relevant.
The 3-D laser-plasma simulation code LPSE* models TPD in the experiments

*J. F. Myatt et al., NO5.00002, this conference.
LPSE simulations confirm the onset of TPD when the threshold parameter $\eta \sim 1$

- *LPSE* shows a similar onset of TPD for the 45° and 50° shot
- *LPSE* overestimates the hot-electron production
- The mechanisms of TPD saturation such as pump depletion are being implemented in *LPSE*
Summary/Conclusions

A new planar-target experimental platform was developed to investigate the impact of two-plasmon decay (TPD) in direct-drive (DD)–ignition designs.

- Planar experiments at the National Ignition Facility (NIF) studied the beam angle-of-incidence dependence of TPD.
- A laser-energy conversion efficiency of \(\sim 1\% \) into hot electrons with \(T_e = 40 \text{ keV to 50 keV} \) was found.
- The beam angle of incidence did not have a strong effect on TPD.