## Modeling Two-Plasmon–Decay Experiments at Direct-Drive **Ignition-Relevant Plasma Conditions at the National Ignition Facility**



A. A. Solodov **University of Rochester** Laboratory for Laser Energetics





### **57th Annual Meeting of the American Physical Society Division of Plasma Physics** Savannah, GA 16-20 November 2015

### Summary

## A new planar-target experimental platform was developed to investigate the impact of two-plasmon decay (TPD) in direct-drive (DD)-ignition designs

- Planar experiments at the National Ignition Facility (NIF) studied the beam angle-of-incidence dependence of TPD
- A laser-energy conversion efficiency of ~1% into hot electrons with  $T_e = 40$  keV to 50 keV was found
- The beam angle of incidence did not have a strong effect on TPD



TC12381a



### **Collaborators**

M. J. Rosenberg,<sup>1</sup> J. F. Myatt, R. Epstein,<sup>2</sup> S. P. Regan, W. Seka, J. Shaw, and M. Hohenberger

> **University of Rochester Laboratory for Laser Energetics**

> > J.W. Bates

**Naval Research Laboratory** 

J. D. Moody, J. E. Ralph, D. P. Turnbull, and M. A. Barrios Lawrence Livermore National Laboratory







<sup>1</sup>M. J. Rosenberg et al., NO5.00006, this conference. <sup>2</sup>R. Epstein et al., NO5.00008, this conference.

## **Planar NIF experiments explore TPD in more extreme conditions** than OMEGA and current NIF polar-direct-drive experiments

**Coronal conditions predicted by DRACO radiation–hydrodynamic simulations** 

| Parameters at <i>n</i> <sub>c</sub> /4 surface | OMEGA*                | Current NIF DD**              | Ignition NIF DD***       | Pl   |
|------------------------------------------------|-----------------------|-------------------------------|--------------------------|------|
| <i>I</i> <sub>L</sub> (W/cm <sup>2</sup> )     | <4 × 10 <sup>14</sup> | <b>4.5</b> × 10 <sup>14</sup> | 8 to $10 \times 10^{14}$ | 6 to |
| $L_{n}$ ( $\mu$ m)                             | <350 <i>µ</i> m       | 350 <i>µ</i> m                | 600 <i>µ</i> m           | 550  |
| T <sub>e</sub> (keV)                           | <2.5 keV              | 3.5 keV                       | 5 keV                    |      |

\*S. X. Hu et al., Phys. Plasmas 20, 032704 (2013). \*\*M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015). \*\*\*T. J. B. Collins et al., Phys. Plasmas 19, 056308 (2012).







# anar NIF o 9 × 10<sup>14</sup> to 600 μm 3.2 keV

### Two planar experiments were fielded on the NIF to study the beam angle-of-incidence dependence of TPD



The empirical TPD threshold is exceeded in this experimental design:  $\eta = I_{14} L_{n,\mu m}/(230 T_{e,keV}) \sim 4$  to 5.

E24123c







### Laser-energy-to-hot-electron conversion efficiency and x-ray spectra were computed using Monte Carlo EGSnrc\* simulations



- EGSnrc models the hot-electron transport, hard x-ray emission, and Mo  $K_{\alpha}$  fluorescence
- Plasma profiles are taken from **DRACO** simulations
- Hot electrons are injected
  - at  $n_c/4$  surface ( $r < 500 \ \mu$ m)
  - isotropic in the forward  $2\pi$  solid angle
  - temperature  $T_{\rm hot} = 40$  to 50 keV from the hard x-ray spectra







<sup>\*</sup>I. Kawrakow et al., NRC, Ottawa, Canada, NRCC Report PIRS-701 (May 2011).

### Measured and simulated time-integrated hard x-ray spectra compare well



Time-integrated hard x-ray spectra indicate  $T_{hot} = 40$  to 50 keV, consistent with TPD.







### Absolute hard x ray and Mo K $_{\alpha}$ emission levels indicate the laser-energyto-hot-electron conversion efficiency is ~1% in both shots



• The overall conversion efficiency is 0.5% to 1.0% ( $T_{hot} = 40$  to 50 keV) in shot N150520 and 0.7% to 1.3% in shot N150521 (during the first 5 ns)

TC12386a







### The 3-D laser-plasma simulation code LPSE\* models TPD in the experiments











\*J. F. Myatt et al., NO5.00002, this conference.

### LPSE simulations confirm the onset of TPD when the threshold parameter $\eta \sim 1$



- LPSE shows a similar onset of TPD for the 45° and 50° shot
- LPSE overestimates the hot-electron production
- The mechanisms of TPD saturation such as pump depletion are being implemented in LPSE



TC12388a



### Summary/Conclusions

A new planar-target experimental platform was developed to investigate the impact of two-plasmon decay (TPD) in direct-drive (DD)-ignition designs

- Planar experiments at the National Ignition Facility (NIF) studied the beam angle-of-incidence dependence of TPD
- A laser-energy conversion efficiency of ~1% into hot electrons with  $T_e = 40$  keV to 50 keV was found
- The beam angle of incidence did not have a strong effect on TPD



TC12381a

