Stimulated Raman Scattering as a Coronal T_e Diagnostic for Direct-Drive **Experiments at the National Ignition Facility**

Savannah, GA 16-20 November 2015

Summarv

Stimulated Raman scattering (SRS) in current polar-direct-drive (PDD) implosions at the National Ignition Facility (NIF) show a wavelength-dependent cutoff consistent with Landau damping of the plasma waves

- Time-dependent SRS spectra are taken in two locations on the NIF, within 30 $^{\circ}$ of the south pole
- The lower end of the SRS spectra is consistent with the Landau cutoff ($k_p \lambda_{De} \sim 0.25$)
- SRS signals are consistent with multibeam SRS sidescattering
- The Landau cutoff can be used as a coronal T_e diagnostic^{*,**} and compares well with 2-D DRACO simulations

E24673

*W. Seka et al., Phys. Fluids 27, 2181 (1984). **B. La Fontaine et al., Phys. Rev. Lett. 68, 484 (1992).

Collaborators

S. P. Regan, P. B. Radha, M. J. Rosenberg, M. Hohenberger, J. F. Myatt, R. W. Short, and V. N. Goncharov

> University of Rochester Laboratory for Laser Energetics

C. S. Goyon, J. D. Moody, J. E. Ralph, and D. P. Turnbull

Lawerence Livermore National Laboratory

The shortest SRS wavelength is determined by Landau damping of the plasma wave at $k_p \lambda_{De} \sim 0.25$

*EPW: Electron plasma wave **EM: Electromagnetic

The Landau cutoff interpretation of the lower SRS wavelength limit varies with an assumed sidescatter angle

ROCHESTER

E24675

The SRS Landau cutoff is well simulated with 2-D DRACO over a wide range of target parameters

- DRACO predictions presently favor a large-sidescatter angle (50°) SRS limit
- More detailed analysis including refraction may modify this interpretation

E24676

T_e (keV)

The SRS spectra of imploding PDD shells can be used to discriminate between different model assumptions in hydrodynamic simulations

E24677

5

3

e (keV)

Laser–plasma interaction signatures pack crucial SRS and two-plasmon– decay (TPD) information for direct-drive experiments near the equator

- The highest intensities are near the equator
- Refraction limits some signals to equatorial regions

Highly desirable diagnostic location

Past (and hopefully future)

Summary/Conclusions

Stimulated Raman scattering (SRS) in current polar-direct-drive (PDD) implosions at the National Ignition Facility (NIF) show a wavelength-dependent cutoff consistent with Landau damping of the plasma waves

- Time-dependent SRS spectra are taken in two locations on the NIF, within 30 $^{\circ}$ of the south pole
- The lower end of the SRS spectra is consistent with the Landau cutoff ($k_p \lambda_{De} \sim 0.25$)
- SRS signals are consistent with multibeam SRS sidescattering
- The Landau cutoff can be used as a coronal T_e diagnostic^{*,**} and compares well with 2-D DRACO simulations

E24673

*W. Seka et al., Phys. Fluids 27, 2181 (1984). **B. La Fontaine et al., Phys. Rev. Lett. 68, 484 (1992).