Energy Coupling and Hot-Spot Pressure in Direct-Drive Layered DT Implosions on OMEGA

S. P. Regan
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
15–20 November 2015
Summary

A 50-Gbar hot-spot pressure and an increase in hydroefficiency have been demonstrated on OMEGA

• A hot-spot pressure of $P_{hs} = 56\pm7$ Gbar was inferred from x-ray and nuclear diagnostics in direct-drive layered DT implosions on OMEGA

• Cross-beam energy transfer* (CBET) was reduced by increasing the initial target diameter while keeping the laser beam size constant
 – as $R_{\text{beam}}/R_{\text{target}}$ was varied from 1.0 to 0.8, the hydroefficiency increased by $\sim40\%$ because of CBET reduction

• Low-mode distortion of the hot spot causes early truncation of the neutron rate and lower P_{hs}

A path to 100-Gbar hot-spot pressure on OMEGA and spherical-direct-drive (SDD) at the National Ignition Facility (NIF) is being developed.

Collaborators

University of Rochester
Laboratory for Laser Energetics

J. A. Frenje, M. Gatu Johnson, R. D. Petrasso

Massachusetts Institute of Technology

S. P. Obenschain, M. Karasik, and A. J. Schmitt

Naval Research Laboratory

D. D. Meyerhofer and M. J. Schmitt

Los Alamos National Laboratory
Outline

• 50-Gbar hot-spot pressure
• CBET reduction
• Effect of low-mode distortions on hot-spot pressure
• Path to 100 Gbar on OMEGA and direct drive on the NIF
• 50-Gbar hot-spot pressure
 • CBET reduction
 • Effect of low-mode distortions on hot-spot pressure
 • Path to 100 Gbar on OMEGA and direct drive on the NIF
The hot-spot pressure and convergence ratio required for ignition decreases with increasing energy coupled to the hot spot.

- Pressure threshold for ignition
 \[P_{\text{th}} \sim \frac{1}{\sqrt{E_{\text{hs}}}} \]

- Generalized Lawson criterion
 \[\chi = \frac{P_{\tau}}{P_{\tau_{\text{ign}}}} = (\rho R)^{0.61} \left(0.24 \frac{Y^{16}}{M} \right)^{0.34} \]
 \[\chi_{\text{OMEGA}} \rightarrow \chi_{\text{NIF}} \sim E^{0.37} \]

Direct-drive ignition: \(\text{CR}^\dagger > 22 \) and \(P_{\text{hs}} > 120 \) Gbar.
X-ray-drive ignition: \(\text{CR} = 30 \) to 40 and \(P_{\text{hs}} > 350 \) Gbar.

\(^\dagger \text{R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015); A. R. Christopherson, CI3.00006, this conference (invited).} \)

\(^\ddagger \text{R. Betti et al., Phys. Plasmas 17, 058102 (2010).} \)

\(^\star \text{CR: convergence ratio} \)
Layered DT targets were imploded on OMEGA for the 50-Gbar campaign*

Target-design parameters

- $V_{\text{imp}} = 3.6 \text{ to } 3.8 \times 10^7 \text{ cm/s}$
- $\alpha = 2.5 \text{ to } 4.5$
- $\text{CR} = 20 \text{ to } 23$
- $\text{IFAR}^{**} = 15 \text{ to } 25$

$\alpha = \frac{P}{P_F}$

IFAR = shell radius/ shell thickness

Sources of low-mode drive nonuniformity

1. Laser beam power imbalance (15% to 20%)
2. Target offset (5 to 30 μm)
3. Laser beam mispointing (10-μm rms)

OMEGA layered DT implosions are hydrodynamically scaled from the NIF direct-drive–ignition design.

*V. N. Goncharov et al., UO4.00005, this conference.

**IFAR: in-flight aspect ratio
Improvements to the laser, target, and diagnostics were required to increase P_{hs} on OMEGA

- **Laser**
 - SG5 phase plates (820 μm diameter, 95% energy encircled)
 - multipulse driver [more energy on target, apply smoothing by spectral dispersion (SSD) to pickets only]
- **Target—Isotope Separator System**
 - D:T is 50:50 at the inner ice layer and gas vapor with <0.1% H
- **Diagnostics**
 - high-temporal (30-ps) and spatial-resolution (6-μm) Kirkpatrick–Baez microscope (KBframed)
 - neutron temporal diagnostic with 40-ps temporal response (P11NTD)
A new set of phase plates designed to improve the on-target drive uniformity were developed for this campaign.

$$I \sim \exp\left[\left(-\frac{r}{r_0}\right)^n\right]$$

Log scale of far field from previous SG4 equivalent-target-plane (ETP) image

Log scale of far field from new SG5 equivalent-target-plane (ETP) image
The 16-channel, gated, Kirkpatrick–Baez microscope (KBframed) measures the evolution of the hot-spot size around stagnation.

OMEGA cryogenic DT target implosion, shot 76828

$\begin{align*}
\text{t} & = 2.717 \text{ ns} \\
\text{t} & = 2.729 \text{ ns} \\
\text{t} & = 2.766 \text{ ns} \\
\text{t} & = 2.774 \text{ ns} \\
\text{t} & = 2.786 \text{ ns} \\
\text{t} & = 2.792 \text{ ns} \\
\text{t} & = 2.811 \text{ ns} \\
\text{t} & = 2.825 \text{ ns} \\
\text{t} & = 2.838 \text{ ns} \\
\text{t} & = 2.855 \text{ ns}
\end{align*}$

100 × 100-μm regions

Relative x-ray intensity

KBframed has 30-ps temporal resolution and 6-μm spatial resolution, and records an image every 15 ps in the 4- to 8-keV photon-energy range.

*PSF: point spread function
The neutron rate is recorded with the neutron temporal diagnostic (NTD*).

P11NTD can measure a minimum burnwidth of 50 ps with a 10% accuracy and absolute bang time ±25 ps (signal-to-background is ~100).

** IRF: instrument response function
A primary DT neutron yield up to $\sim 5 \times 10^{13}$ with a ρR of ~ 200 mg/cm2 has been recorded.

Yield-over-clean (YOC) \equiv measured $Y/1$-D $Y = 0.2$ to 0.6

ρROC \equiv measured $\rho R/1$-D $\rho R = 0.5$ to 1

$T_i = 2.7$ to 3.8 keV
A hot-spot pressure of 56 ± 7 Gbar was inferred from nuclear and x-ray diagnostics assuming isobaric hot spot*

$$N_{\text{max}} = n_T n_D T^2 \int_{V_{\text{hs}}} \frac{dV\langle\sigma v\rangle}{T^2}$$

$$N_{\text{max}} = 2Y \sqrt{\ln 2/\pi} / \Delta t_{\text{burn}}$$

(assuming a Gaussian neutron rate with FWHM** = Δt_{burn})

$$P_{\text{hs}} \simeq \left[8Y \sqrt{\ln 2/\pi} \left(\Delta t_{\text{burn}} \int_{V_{\text{hs}}} \frac{dV\langle\sigma v\rangle}{T^2} \right) \right]^{1/2}$$

**FWHM: full width at half maximum

$T(r) = T_c \left[1 - \left(r / R_{\text{hs}} \right)^2 \left(1 - 0.15^{3/2} \right) \right]^{2/3}$

T_c is the maximum hot-spot temperature

$$\left< T_i \right>_n = \left(\int_{V_{\text{hs}}} \frac{dV\langle\sigma v\rangle}{T} \right) \left/ \int_{V_{\text{hs}}} \frac{dV\langle\sigma v\rangle}{T^2} \right.$$}

$R_{\text{hs}} = 1.06 R_{17}$

OMEGA cryogenic target shot 77066

$R_{17} = 22.0\pm0.4 \mu m$ (KBframed + framed pinholes)

$Y = 4.0 \times 10^{13}$

$\Delta t_{\text{burn}} = 63\pm5$ ps (x rays), 67 ± 5 ps (neutrons), 66 ps (1-D)

$\langle T_i \rangle_n = 3.2\pm0.4$ keV

$P_{\text{hs, exp}} = 56\pm7$ Gbar

$P_{\text{hs, 1-D}} = 90$ Gbar

$\alpha = 3.3$

**FWHM: full width at half maximum
Outline

• 50-Gbar hot-spot pressure
• CBET reduction
• Effect of low-mode distortions on hot-spot pressure
• Path to 100 Gbar on OMEGA and direct drive on the NIF
R_b/R_t was varied from 1.0 to 0.8 by changing the target diameter to reduce CBET*

The target diameter is varied from 800 to 1000 μm, while keeping the laser beam size constant, to reduce CBET.

CBET modeling is required in the 1-D simulation to match the measurements*

Outside diameter (OD) = 805 μm
\[I = 1.1 \times 10^{15} \text{ W/cm}^2 \]
\[f_{\text{abs, expt}} = 54 \pm 6\% \]
\[f_{\text{abs, 1-D with CBET}} = 52\% \]
\[f_{\text{abs, 1-D without CBET}} = 71\% \]

• Absorption reduced 27% by CBET

Outside diameter (OD) = 1017 μm
\[I = 0.7 \times 10^{15} \text{ W/cm}^2 \]
\[f_{\text{abs, expt}} = 75 \pm 2\% \]
\[f_{\text{abs, 1-D with CBET}} = 77\% \]
\[f_{\text{abs, 1-D without CBET}} = 92\% \]

• Absorption reduced 16% by CBET

The effect of CBET is reduced for the larger target.

CBET modeling is required in the 1-D simulation to match the measurements*.

The measured shell trajectory constrains the model during the acceleration phase.

CBET modeling is required in the 1-D simulation to match the measurements*

The measured neutron rate shows deviation from the 1-D prediction near stagnation.

More kinetic energy is coupled to the larger target because of a reduction in CBET

\[V_{\text{imp, 1-D}} = 3.6 \times 10^7 \text{ cm/s for both designs} \]

EKE shell (1-D) = 1.3 kJ

1-D simulations agree with the measured shell trajectories; energy coupling to the imploding shell is taken from the 1-D simulation.
An ~40% increase in the hydrodynamic efficiency was inferred because of a reduction in CBET.
The observed increase in energy coupling with target diameter does not result in a higher hot-spot pressure.

The peak hot-spot pressure of 56 ± 7 Gbar inferred for the smaller targets corresponds to 50% to 65% of the 1-D prediction.
• 50-Gbar hot-spot pressure
• CBET reduction
• Effect of low-mode distortions on hot-spot pressure
• Path to 100 Gbar on OMEGA and direct drive on the NIF
Three-dimensional simulations predict early burn truncation because of low-mode ($\ell \leq 5$) hot-spot distortion growth.

Larger targets have a higher level of low-mode drive nonuniformity because of reduced beam overlap.

Perturbation sources
- 15% rms laser power imbalance
- 20-\(\mu\)m target offset
- 10-\(\mu\)m rms laser beam mispointing

I. V. Igumenshchev et al., UO4.00015, this conference.
The measured neutron rate shows burn truncation similar to the 3-D simulation. The measured rising slope deviates from the 1-D prediction around 10^{23} s$^{-1}$ and the peak measured neutron rate is 36% of the 1-D value.
The measured neutron rate shows the onset of burn truncation occurs earlier for the larger targets.

The measured rising slope deviates from the 1-D prediction around 10^{22} s$^{-1}$ and the peak measured neutron rate is 15% of the 1-D value.
The 1-D predictions are closer to the inferred P_{hs} and ρR in implosions with $CR < 17$ and $\alpha > 3.5$ when burn truncation is included in the analysis.

Low-mode distortion of the hot-spot is the primary factor degrading target performance for the high-adiabat OMEGA DT cryo implosions.
• 50-Gbar hot-spot pressure
• CBET reduction
• Effect of low-mode distortions on hot-spot pressure
• Path to 100 Gbar on OMEGA and direct drive on the NIF
The National Direct-Drive Program has four elements

1. Hydro-equivalent implosions on OMEGA
 - demonstration and physics understanding of ignition-relevant hot-spot pressure (100 Gbar)
 - OMEGA experiments will also demonstrate laser-plasma interaction (LPI) control (CBET mitigation: laser-beam zooming, wavelength detuning, preheat mitigation) strategies

2. LPI, energy coupling, imprint mitigation at MJ-scale plasmas on the NIF
 - will involve both planar and implosion platforms

3. Strategy for conversion of the NIF to SDD
 - cost, schedule, phased approach
 - laser technology development

4. Robust target designs for a range of performances

The National Direct-Drive strategy involves multiple laboratories.
Summary/Conclusions

A 50-Gbar hot-spot pressure and an increase in hydroefficiency have been demonstrated on OMEGA

• A hot-spot pressure of $P_{hs} = 56\pm 7$ Gbar was inferred from x-ray and nuclear diagnostics in direct-drive layered DT implosions on OMEGA

• Cross-beam energy transfer* (CBET) was reduced by increasing the initial target diameter while keeping the laser beam size constant
 – as R_{beam}/R_{target} was varied from 1.0 to 0.8, the hydroefficiency increased by ~40% because of CBET reduction

• Low-mode distortion of the hot spot causes early truncation of the neutron rate and lower P_{hs}

A path to 100-Gbar hot-spot pressure on OMEGA and spherical-direct-drive (SDD) at the National Ignition Facility (NIF) is being developed.