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Summary

A 50-Gbar hot-spot pressure and an increase in hydroefficiency  
have been demonstrated on OMEGA

•	 A hot-spot pressure of Phs = 56!7 Gbar was inferred from x-ray and  
nuclear diagnostics in direct-drive layered DT implosions on OMEGA

•	 Cross-beam energy transfer* (CBET) was reduced by increasing  
the initial target diameter while keeping the laser beam size constant

–– as Rbeam/Rtarget was varied from 1.0 to 0.8, the hydroefficiency 
increased by ~40% because of CBET reduction

•	 Low-mode distortion of the hot spot causes early truncation  
of the neutron rate and lower Phs
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A path to 100-Gbar hot-spot pressure on OMEGA and spherical-direct- 
drive (SDD) at the National Ignition Facility (NIF) is being developed.

*  I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); 
D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012);  
V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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Outline 

•	 50-Gbar hot-spot pressure

•	 CBET reduction 

•	 Effect of low-mode distortions on hot-spot pressure

•	 Path to 100 Gbar on OMEGA and direct drive on the NIF
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Outline 

5

•	 50-Gbar hot-spot pressure

•	 CBET reduction 

•	 Effect of low-mode distortions on hot-spot pressure

•	 Path to 100 Gbar on OMEGA and direct drive on the NIF
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The hot-spot pressure and convergence ratio required for ignition  
decreases with increasing energy coupled to the hot spot
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Mitigated CBET

Direct-drive ignition: CR† > 22 and Phs > 120 Gbar. 
X-ray-drive ignition: CR = 30 to 40 and Phs > 350 Gbar.
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•	 Pressure threshold for ignition

•	 Generalized Lawson criterion**

	 * R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015); 
		  A. R. Christopherson, CI3.00006, this conference (invited).
** R. Betti et al., Phys. Plasmas 17, 058102 (2010).
	 † CR: convergence ratio
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Layered DT targets were imploded on OMEGA for the 50-Gbar campaign*
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	 * V. N. Goncharov et al., UO4.00005, this conference.
** IFAR: in-flight aspect ratio

Target-design parameters
Vimp = 3.6 to 3.8 × 107 cm/s 
a = 2.5 to 4.5 
CR = 20 to 23 
IFAR** = 15 to 25

a = P/PF
IFAR = shell radius/ 
	 shell thickness
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OMEGA layered DT implosions are hydrodynamically  
scaled from the NIF direct-drive–ignition design.

Sources of low-mode drive nonuniformity

1.	 Laser beam power imbalance (15% to 20%)

2.	Target offset (5 to 30 nm)

3.	Laser beam mispointing (10-nm rms)
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Improvements to the laser, target, and diagnostics  
were required to increase Phs on OMEGA

•	 Laser
–– SG5 phase plates (820 nm diameter, 95% energy encircled)

–– multipulse driver [more energy on target, apply smoothing  
by spectral dispersion (SSD) to pickets only]

•	 Target—Isotope Separator System 
–– D:T is 50:50 at the inner ice layer and gas vapor with <0.1% H 

•	 Diagnostics
–– high-temporal (30-ps) and spatial-resolution (6-nm)  
Kirkpatrick–Baez microscope (KBframed)

–– neutron temporal diagnostic with 40-ps temporal  
response (P11NTD)
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A new set of phase plates designed to improve the on-target  
drive uniformity were developed for this campaign
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0 Max
Relative x-ray intensity

100 × 100-nm regions

OMEGA cryogenic DT target implosion, shot 76828

t = 2.717 ns

PSF*

t = 2.729 ns t = 2.766 ns t = 2.774 ns t = 2.786 ns

t = 2.792 ns t = 2.811 ns t = 2.825 ns t = 2.838 ns t = 2.855 ns
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The 16-channel, gated, Kirkpatrick–Baez microscope (KBframed)  
measures the evolution of the hot-spot size around stagnation
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	 F. J. Marshall et al., UO4.00004, this conference; F. J. Marshall, Rev. Sci. Instrum. 83, 10E518 (2012).
* PSF: point spread function

KBframed has 30-ps temporal resolution and 6-nm spatial resolution,  
and records an image every 15 ps in the 4- to 8-keV photon-energy range.
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The neutron rate is recorded with the neutron temporal diagnostic (NTD*)
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P11NTD can measure a minimum burnwidth of 50 ps with a 10% accuracy 
and absolute bang time !25 ps (signal-to-background is ~100).

	 * C. Stoeckl et al., “A Neutron Temporal Diagnostic for High-Yield DT Cryogenic  
		  Implosions on OMEGA,” to be submitted to the Review of Scientific Instruments.
** IRF: instrument response function
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A primary DT neutron yield up to ~5 × 1013  
with a tR of ~200 mg/cm2 has been recorded 
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Yield-over-clean (YOC) / measured Y/1-D Y = 0.2 to 0.6 
tROC / measured tR/1-D tR = 0.5 to 1
Ti = 2.7 to 3.8 keV
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A hot-spot pressure of 56!7 Gbar was inferred from nuclear  
and x-ray diagnostics assuming isobaric hot spot*
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	 * C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas 20, 056319 (2013);
		  R. Betti et al., Phys. Plasmas 17, 058102 (2010).
** FWHM: full width at half maximum

R17 = 22.0!0.4 nm (KBframed + framed pinholes)
Y = 4.0 × 1013

Dtburn = 63!5 ps (x rays), 67!5 ps (neutrons), 66 ps (1-D)
GTiHn = 3.2!0.4 keV
Phs, exp = 56!7 Gbar
Phs, 1-D = 90 Gbar
a = 3.3

OMEGA cryogenic target shot 77066
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Outline 
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•	 50-Gbar hot-spot pressure

•	 CBET reduction 

•	 Effect of low-mode distortions on hot-spot pressure

•	 Path to 100 Gbar on OMEGA and direct drive on the NIF
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Rb/Rt was varied from 1.0 to 0.8 by changing  
the target diameter to reduce CBET*
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* I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012);  
	 V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014); V. N. Goncharov et al., UO4.00005, this conference.

The target diameter is varied from 800 to 1000 nm, while 
keeping the laser beam size constant, to reduce CBET.
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CBET modeling is required in the 1-D simulation to match the measurements*

The effect of CBET is reduced for the larger target.
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	 *  V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
**  S. X. Hu et al., Phys. Rev. E 92, 043104 (2015).

1-D simulation includes*

•	 nonlocal thermal 
conduction 

•	 first-principles  
equation of state** 

Outside diameter (OD) = 805 nm
I = 1.1 × 1015 W/cm2

fabs, expt = 54 !6%
fabs, 1-D with CBET = 52%
fabs, 1-D without CBET = 71%

OD = 1017 nm
I = 0.7 × 1015 W/cm2

fabs, expt = 75 !2%
fabs, 1-D with CBET = 77%
fabs, 1-D without CBET = 92%

•	 Absorption reduced 27% by CBET

•	 Absorption reduced 16% by CBET
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CBET modeling is required in the 1-D simulation to match the measurements*
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	*  V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
** D. T. Michel et al., Phys. Rev. Lett. 114, 155002 (2015).

The measured shell trajectory constrains the model during the acceleration phase.
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CBET modeling is required in the 1-D simulation to match the measurements*

18

N
eu

tr
o

n
 r

at
e 

(1
/s

)

Time 
error

1021

2.5 2.6 2.7 2.8 2.9 3.0

1022

1023

1024
Simulation convolved

with IRF

Measurement

Shot 76607, NTD

Time (ns)

The measured neutron rate shows deviation from the 1-D prediction near stagnation.

	 *  V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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More kinetic energy is coupled to the larger target  
because of a reduction in CBET
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Vimp, 1-D = 3.6 × 107 cm/s for both designs
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1-D simulations agree with the measured shell trajectories; energy  
coupling to the imploding shell is taken from the 1-D simulation.
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An ~40% increase in the hydrodynamic efficiency  
was inferred because of a reduction in CBET

Measured shell trajectories for 860-nm, 900-nm, and 1000-nm  
targets with a fixed beam size constrain the 1-D simulations.
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The observed increase in energy coupling with target diameter  
does not result in a higher hot-spot pressure

The peak hot-spot pressure of 56!7 Gbar inferred for the smaller  
targets corresponds to 50% to 65% of the 1-D prediction.
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Outline 
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•	 50-Gbar hot-spot pressure

•	 CBET reduction 

•	 Effect of low-mode distortions on hot-spot pressure

•	 Path to 100 Gbar on OMEGA and direct drive on the NIF
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Three-dimensional simulations predict early burn truncation  
because of low-mode (, # 5) hot-spot distortion growth 

Larger targets have a higher level  
of low-mode drive nonuniformity  
because of reduced beam overlap.
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	 * I. V. Igumenshchev et al., UO4.00015, this conference.
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The measured neutron rate shows burn truncation similar to the 3-D simulation

The measured rising slope deviates from the 1-D prediction around 
1023 s–1 and the peak measured neutron rate is 36% of the 1-D value.
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The measured neutron rate shows the onset of burn truncation  
occurs earlier for the larger targets

The measured rising slope deviates from the 1-D prediction around 
1022 s–1 and the peak measured neutron rate is 15% of the 1-D value. 
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The 1-D predictions are closer to the inferred Phs and tR in implosions  
with CR < 17 and a > 3.5 when burn truncation is included in the analysis
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•	 50-Gbar hot-spot pressure

•	 CBET reduction 

•	 Effect of low-mode distortions on hot-spot pressure

•	 Path to 100 Gbar on OMEGA and direct drive on the NIF
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The National Direct-Drive Program has four elements

1.	 Hydro-equivalent implosions on OMEGA 
–– demonstration and physics understanding of ignition- 

relevant hot-spot pressure (100 Gbar)
–– OMEGA experiments will also demonstrate laser–plasma interaction (LPI) 

control (CBET mitigation: laser-beam zooming, wavelength detuning, 
preheat mitigation) strategies

2.	LPI, energy coupling, imprint mitigation at MJ-scale plasmas on the NIF
–– will involve both planar and implosion platforms

3.	Strategy for conversion of the NIF to SDD
–– cost, schedule, phased approach 
–– laser technology development

4.	Robust target designs for a range of performances

28

The National Direct-Drive strategy involves multiple laboratories.



Summary/Conclusions
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A 50-Gbar hot-spot pressure and an increase in hydroefficiency  
have been demonstrated on OMEGA

*  I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010); 
D. H. Froula et al., Phys. Rev. Lett. 108, 125003 (2012);  
V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).

•	 A hot-spot pressure of Phs = 56!7 Gbar was inferred from x-ray and  
nuclear diagnostics in direct-drive layered DT implosions on OMEGA

•	 Cross-beam energy transfer* (CBET) was reduced by increasing  
the initial target diameter while keeping the laser beam size constant

–– as Rbeam/Rtarget was varied from 1.0 to 0.8, the hydroefficiency 
increased by ~40% because of CBET reduction

•	 Low-mode distortion of the hot spot causes early truncation  
of the neutron rate and lower Phs

A path to 100-Gbar hot-spot pressure on OMEGA and spherical-direct- 
drive (SDD) at the National Ignition Facility (NIF) is being developed.


