Direct Drive: Simulations and Experiments at the National Ignition Facility

P. B. Radha **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

National Ignition Facility (NIF) experiments are being used to validate direct-drive-implosion models in regimes approaching ignition relevance

- Models relating to energetics have been developed using OMEGA experiments
- Trajectories and scattered-light data indicate that energetics is captured well by models that include the effect of cross-beam energy transfer (CBET) and nonlocal heat conduction
- Focused experiments relating to shock timing, imprint, and preheat are ongoing
- The major goal of the next few years is to demonstrate mitigation of CBET and preheat from two-plasmon decay

Collaborators

M. Hohenberger, T. R. Boehly, T. J. B Collins, R. S. Craxton, J. A. Delettrez, D. H. Edgell, D. H. Froula, V. N. Goncharov, S. X. Hu, J. P. Knauer, J. A. Marozas, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. T. Michel, J. F. Myatt, S. P. Regan, M. J. Rosenberg, T. C. Sangster, W. Seka, A. Shvydky, and S. Skupsky **University of Rochester** Laboratory for Laser Energetics J. A. Frenje, R. D. Petrasso, H. Sio, and A. B. Zylstra **Plasma Fusion Science Center**, **Massachusetts Institute of Technology** S. N. Dixit, S. Le Pape, and A. J. Mackinnon Lawrence Livermore National Laboratory J. W. Bates, M. Karasik, and S. P. Obenschein **Naval Research Laboratory D. D. Meyerhofer**

Los Alamos National Laboratory

Direct-drive designs are in a less hydrodynamically challenging regime than x-ray drive

• Direct-drive couples ~3 to 5× more energy into the imploding shell than x-ray drive

$${m P_{hs}} \sim ({m E_{hs}})^{-1/2}$$

$${f C}_{\it r}^{
m ign} \sim \left({m E}_{
m kin}
ight)^{-1/6}$$

- Direct drive: $C_r^{ign} > 22$ and $P_{hs} > 120$ Gbar
- X-ray drive: $C_r^{ign} > 30$ to 40 and $P_{hs} > 350$ Gbar

TC12631

V. N. Goncharov et al., UO4.00005, this conference; S. P. Regan, Cl3.00005, this conference (invited).

Two major direct-drive goals are being pursued on the NIF over the next two years

Validation of models

- CBET
 - reduces implosion velocity and ablation pressure
- Nonlocal heat conduction
 - couples more energy into the shell
 - increases ablation pressure
- Laser imprint and Rayleigh–Taylor (RT) growth

Mitigation of laser–plasma interactions

CBET

- zooming approach on OMEGA¹
- wavelength detuning on the NIF²
- Two-plasmon decay
 - mid-Z layers³
- Laser imprint and RT growth - doped⁴ or high-Z ablators⁵

TC12579

¹I. V. Igumenshchev, Phys. Rev., Lett. <u>110</u>, 145001 (2013). ³M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015). ⁴G. Fiksel et al., Phys. Plasmas <u>19</u>, 062704 (2012). ⁵S. P. Obsenschain et al., Phys. Plasmas 9, 2234 (2002).

²J. A. Marozas et al., JO5.00005, this conference.

A variety of platforms have been developed on the NIF to study direct drive

Kochester

Polar direct drive* (PDD) permits direct-drive experiments on the NIF to explore implosion physics

- Beams are displaced toward the equator to improve symmetry
- Existing NIF hardware (beam smoothing, phase plates) are used for ongoing experiments—target performance is not the goal
- Validation of models and mitigation of imprint and laser-plasma interactions will be studied

TC7194r

*S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).

Trajectory, symmetry, and scattered light provide information about energetics in room-temperature implosions on the NIF

Kochester

²F. J. Marshall et al., Phys. Rev. Lett. <u>102</u>, 185004 (2009).

CBET reduces drive preferentially near the equatorial region in polar direct drive

- Compared to only collisional absorption mechanism of laser deposition, CBET results in
 - more scattered light visible near the poles relative to equator
 - reduced velocity (by ~15%) and ablation pressure (by ~45%)
 - more oblate implosions
- PDD is a more-stringent test of modeling compared to spherical drive

TC12389a

CBET reduces drive preferentially near the equatorial region in polar direct drive

- Compared to only collisional absorption mechanism of laser deposition, CBET results in
 - more scattered light visible near the poles relative to equator
 - reduced velocity (by ~15%) and ablation pressure (by ~45%)
 - more oblate implosions
- PDD is a more-stringent test of modeling compared to spherical drive

TC12389b

Scattered Light

Scattered light from the equatorial region of the target is observed at the polar locations in the target chamber

OMEGA experiments indicate more scattered light at the polar region of the target chamber, consistent with CBET modeling

¹C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981); J. A. Marozas et al., JO5.00005, this conference. ²D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015). ³S. X. Hu et al., Phys. Rev E 92, 043104 (2015).

TC12586

The shape of the scattered-light time histories and spectra are reproduced when CBET is included in the calculation

• Quantitative inference of the scattered-light energy requires detector calibration

TC11725c

Fast diode ----- Streak DRACO Laser pulse shape

Trajectory

The backlit shell trajectory is well-modeled by simulation

• The 2-D DRACO simulation includes the effect of CBET,¹ nonlocal transport,² and FPEOS³

- Possible reasons for ablation-surface decompression include
 - preheat (radiative and/or fast electrons); a lower-intensity implosion is being investigated to identify if this is a cause
 - single-beam nonuniformity

¹C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids <u>24</u>, 1474 (1981); J. A. Marozas et al., JO5.00005, this conference. ²D. Cao, G. Moses, and J. Delettrez, Phys. Plasmas 22, 082308 (2015). ³S. X. Hu et al., Phys. Rev E 92, 043104 (2015).

E24440b

Imprint can cause an apparent decompression in the trajectory of peak self-emission

- Cone-in-shell and planar platforms are being developed to study imprint*
- Improved beam smoothing (multi-FM)^{**} will be implemented on one NIF quad to study imprint mitigation

^{*}A. Shvydky et al., GO5.00005; M. Hohenberger et al., JO4.00006, this conference.

^{**}Laboratory for Laser Energetics LLE Review 91, 116, NTIS Order No. PB2006-106662 (2002).

CBET results in a very different shape of the imploding shell

NIF implosion simulation post-processed with Spect3D* N150118-002

*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

The overall shape of the imploding core agrees well with simulations

- Custom phase plates can significantly improve symmetry*
- Residual differences may be caused by
 - uncertainties in beam profiles
 - 3-D effects
 - shot-to-shot variations

TC12379a

*D. Cao et al., BO4.00014, this conference.

Preheat Mitigation

Mitigating CBET is expected to increase the energy in hot electrons from two-plasmon decay (TPD)

• CBET mitigation studies using wavelength detuning* will be studied on the NIF next year

Threshold parameter:**

$$\eta = \frac{I_{n_{\rm c}}/4}{233 \, T_{\rm e} \, (\rm keV)} L_{\rm n} \, (10^{14} \, \rm W/cm^2) \, L_{\rm n} \, (\rm keV)$$

The higher η without CBET is primarily because of a higher intensity at the quarter-critical surface

TC12436

μm

*J. A. Marozas et al., JO5.0005, this conference. **A. Simon et al., Phys. Fluids 26, 3107 (1983).

• From OMEGA experiments,* ~1/7 of the hot-electron energy is deposited in the unablated shell

*A. R. Christopherson et al., presented at IFSA 2015, Seattle, WA, 20–25 September 2015.

• From semi-analytic estimates,* ≤1.5% of shell kinetic energy into hot electrons can be tolerated by ignition designs

$$E_{L} = 1.5 \text{ MJ}; E_{kin} \sim 8$$

 $E_{dep} \lesssim 1.2 \text{ kJ}$
 $E_{dep} / E_{L} \lesssim 0.08\%$

TC12438a

80 kJ

• From semi-analytic estimates,* ≤1.5% of shell kinetic energy into hot electrons can be tolerated by ignition designs

$$E_{L} = 1.5 \text{ MJ}; E_{kin} \sim 8$$

 $E_{dep} \lesssim 1.2 \text{ kJ}$
 $E_{dep} / E_{L} \lesssim 0.08\%$

TC12438b

80 kJ

• From semi-analytic estimates,* ≤1.5% of shell kinetic energy into hot electrons can be tolerated by ignition designs

$$E_{L} = 1.5 \text{ MJ}; E_{kin} \sim 8$$

 $E_{dep} \lesssim 1.2 \text{ kJ}$
 $E_{dep} / E_{L} \lesssim 0.08\%$

80 kJ

Mid-Z layers can be used to mitigate the hot-electron source

Summary/Conclusions

National Ignition Facility (NIF) experiments are being used to validate direct-drive-implosion models in regimes approaching ignition relevance

- Models relating to energetics have been developed using OMEGA experiments
- Trajectories and scattered-light data indicate that energetics is captured well by models that include the effect of cross-beam energy transfer (CBET) and nonlocal heat conduction
- Focused experiments relating to shock timing, imprint, and preheat are ongoing
- The major goal of the next few years is to demonstrate mitigation of CBET and preheat from two-plasmon decay

