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Summary

National Ignition Facility (NIF) experiments are being used to validate 
direct-drive–implosion models in regimes approaching ignition relevance

• Models relating to energetics have been developed using OMEGA experiments 

• Trajectories and scattered-light data indicate that energetics is captured well by models 
that include the effect of cross-beam energy transfer (CBET) and nonlocal heat conduction

• Focused experiments relating to shock timing, imprint, and preheat are ongoing

• The major goal of the next few years is to demonstrate mitigation of CBET 
and preheat from two-plasmon decay
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Direct-drive designs are in a less hydrodynamically challenging regime 
than x-ray drive
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• Direct-drive couples ~3 to 5× more energy into the imploding shell than x-ray drive

• Direct drive: and GbarC P22 120ign
hsr 2 2
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V. N. Goncharov et al., UO4.00005, this conference;
S. P. Regan, CI3.00005, this conference (invited).
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Two major direct-drive goals are being pursued on the NIF 
over the next two years
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1I. V. Igumenshchev, Phys. Rev., Lett. 110, 145001 (2013).    
2J. A. Marozas et al., JO5.00005, this conference.
3M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015).
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• CBET
– reduces implosion velocity 

and ablation pressure

• Nonlocal heat conduction
– couples more energy into the shell
– increases ablation pressure

• Laser imprint and Rayleigh–Taylor 
(RT) growth

• CBET
– zooming approach on OMEGA1

– wavelength detuning on the NIF2

• Two-plasmon decay
– mid-Z layers3

• Laser imprint and RT growth
– doped4 or high-Z ablators5

Validation of models Mitigation of laser–plasma interactions
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A variety of platforms have been developed on the NIF to study direct drive
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Polar direct drive* (PDD) permits direct-drive experiments on the NIF 
to explore implosion physics
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*S. Skupsky et al., Phys. Plasmas 11, 2763 (2004).

• Beams are displaced toward the equator 
to improve symmetry

• Existing NIF hardware (beam smoothing, 
phase plates) are used for ongoing 
experiments—target performance is not the goal 

 • Validation of models and mitigation of imprint 
and laser–plasma interactions will be studied
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Trajectory, symmetry, and scattered light provide information about energetics 
in room-temperature implosions on the NIF
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CBET reduces drive preferentially near the equatorial region 
in polar direct drive
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• Compared to only collisional absorption 
mechanism of laser deposition, CBET 
results in

– more scattered light visible near 
the poles relative to equator

– reduced velocity (by ~15%) 
and ablation pressure (by ~45%)

– more oblate implosions

• PDD is a more-stringent test of modeling 
compared to spherical drive

Target
Polar drive

Less drive at
the equator

Additional scattered light 
visible near the poles

Beam1
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CBET reduces drive preferentially near the equatorial region 
in polar direct drive
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• Compared to only collisional absorption 
mechanism of laser deposition, CBET 
results in

– more scattered light visible near 
the poles relative to equator

– reduced velocity (by ~15%) 
and ablation pressure (by ~45%)

– more oblate implosions

• PDD is a more-stringent test of modeling 
compared to spherical drive

Target
Polar drive

Less drive at
the equator

Additional scattered light 
visible near the poles

caused by CBET

Beam1
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m
2



TC12585

Scattered light from the equatorial region of the target is observed 
at the polar locations in the target chamber
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OMEGA experiments indicate more scattered light at the polar region 
of the target chamber, consistent with CBET modeling
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The shape of the scattered-light time histories and spectra are reproduced 
when CBET is included in the calculation

• Quantitative inference of the scattered-light energy requires detector calibration
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The backlit shell trajectory is well-modeled by simulation
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1C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981); 
J. A. Marozas et al., JO5.00005, this conference.
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• Possible reasons for ablation-surface decompression include     

– preheat (radiative and/or fast electrons); a lower-intensity implosion is being investigated 
to identify if this is a cause

– single-beam nonuniformity 

• The 2-D DRACO simulation includes the effect of CBET,1 nonlocal transport,2 and FPEOS3

Trajectory
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Imprint can cause an apparent decompression in the trajectory 
of peak self-emission

• Cone-in-shell and planar platforms are being developed to study imprint*

• Improved beam smoothing (multi-FM)** will be implemented on one NIF quad to study imprint mitigation 
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DRACO simulation with beam
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CBET results in a very different shape of the imploding shell
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*J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2007).

NIF implosion simulation post-processed with Spect3D*
N150118-002
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Collisional absorption only
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The overall shape of the imploding core agrees well with simulations
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*D. Cao et al., BO4.00014, this conference.
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• Custom phase plates can significantly improve symmetry*

• Residual differences may be caused by
– uncertainties in beam profiles
– 3-D effects
– shot-to-shot variations



TC12436

Mitigating CBET is expected to increase the energy 
in hot electrons from two-plasmon decay (TPD)

• CBET mitigation studies using wavelength detuning* will be studied on the NIF next year
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• The higher h without CBET is primarily 
because of a higher intensity at the 
quarter-critical surface

*J. A. Marozas et al., JO5.0005, this conference.
**A. Simon et al., Phys. Fluids 26, 3107 (1983).
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Ongoing experiments indicate tolerable preheat 
at the lowest possible intensity for ignition
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• From OMEGA experiments,* ~1/7 of the hot-electron 
energy is deposited in the unablated shell
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*A. R. Christopherson et al., presented at IFSA 2015, Seattle, WA, 20–25 September 2015.
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Ongoing experiments indicate tolerable preheat 
at the lowest possible intensity for ignition
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• From semi-analytic estimates,* K1.5% of shell 
kinetic energy into hot electrons can be tolerated 
by ignition designs
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Ongoing experiments indicate tolerable preheat 
at the lowest possible intensity for ignition
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• From semi-analytic estimates,* K1.5% of shell 
kinetic energy into hot electrons can be tolerated 
by ignition designs
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Ongoing experiments indicate tolerable preheat 
at the lowest possible intensity for ignition
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• From semi-analytic estimates,* K1.5% of shell 
kinetic energy into hot electrons can be tolerated 
by ignition designs
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Mid-Z layers can be used to mitigate the hot-electron source
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Summary/Conclusions
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National Ignition Facility (NIF) experiments are being used to validate 
direct-drive–implosion models in regimes approaching ignition relevance

• Models relating to energetics have been developed using OMEGA experiments 

• Trajectories and scattered-light data indicate that energetics is captured well by models 
that include the effect of cross-beam energy transfer (CBET) and nonlocal heat conduction

• Focused experiments relating to shock timing, imprint, and preheat are ongoing

• The major goal of the next few years is to demonstrate mitigation of CBET 
and preheat from two-plasmon decay


