Supersonic Propagation of a K-Shell Ionization Front in Metal Targets

Signal (analog-to-digital units)

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16–20 November 2015

Summary

Hot-electron-driven ionization fronts were measured in high-intensity, laser-irradiated metal targets

- A monochromatic, streaked x-ray crystal imager has been developed for the OMEGA EP laser to study collisional ionization-front dynamics in solid-density metals
- Spatial, spectral, and temporal resolution is obtained by coupling a spherically bent crystal imager with a 2-ps-resolution x-ray streak camera
- Implicit-hybrid particle-in-cell (PIC) and collisional-radiative code calculations are used to model the hot-electron transport, target heating, and front dynamics

The predicted front and target-heating dynamics are consistent with experimental observations.

E21092c

Collaborators

C. Stoeckl, P. A. Jaanimagi,* C. Mileham, W. Theobald,[†] J. R. Davies,[†] J. F. Myatt, A. A. Solodov,[†] D. H. Froula, and R. Betti,[†]

University of Rochester Laboratory for Laser Energetics [†]also Fusion Science Center

G. Fiksel

University of Michigan

D. D. Meyerhofer

Los Alamos National Laboratory

*Retired

Little time- and space-resolved data exists on ultrafast energy transport inside solid matter

- Warm-dense-matter (WDM) systems start as a solid and end as a plasma
- WDM is found in stellar interiors, cores of large planets, and inertial confinement fusion (ICF) implosions^{1,2}
- Significant uncertainties exist in WDM equation of state³ and opacity⁴

Measurements are required for model development.

¹A Report on the SAUUL Workshop, Washington, DC (17–19 June 2002).
²R. W. Lee et al., Lawrence Livermore National Laboratory, Livermore, CA, Report UCRL-TR-203844 (2004).
³M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. <u>75</u>, 2586 (2004).
⁴R. A. London and J. I. Castor, High Energy Density Phys. <u>9</u>, 725 (2013).

Spatial, spectral, and temporal resolution is obtained by coupling a spherical crystal imager with an ultrafast x-ray streak camera

E21094d

Streaked K_{α} imaging shows a collisional ionization front and ultrafast energy transport into the target

E24408a

 d_{80} : diameter containing 80% of the laser energy

UR 🔌

The K_{α} front dynamics are modeled in two parts

E24410a

* D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001).

K_{α} -yield suppression, spectral shifts, and opacity modify the signal in the aperture energy bandwidth

These data are used to post-process the cold K_{α} -emission profiles predicted by LSP.

The predicted ionization front and heating dynamics show reasonable agreement with the data

Target heating suppresses K_{α} emission from the central regions of the target.

Summary/Conclusions

Hot-electron–driven ionization fronts were measured in high-intensity, laser-irradiated metal targets

- A monochromatic, streaked x-ray crystal imager has been developed for the OMEGA EP laser to study collisional ionization-front dynamics in solid-density metals
- Spatial, spectral, and temporal resolution is obtained by coupling a spherically bent crystal imager with a 2-ps-resolution x-ray streak camera
- Implicit-hybrid particle-in-cell (PIC) and collisional-radiative code calculations are used to model the hot-electron transport, target heating, and front dynamics

The predicted front and target-heating dynamics are consistent with experimental observations.

E21092c

