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E24159b

Summary

Nonlocal (NL) electron transport and cross-beam energy transfer (CBET) 
models* are required to reproduce the mass ablation rate and the length  
of the conduction zone measured in cryogenic implosions on OMEGA

• An averaged CD mass ablation rate of 8.0!0.3 ng/ns was measured  
by imaging the self-emission x rays in cryogenic implosions

• The conduction zone length of 100!20 nm was determined  
from the combination of the measurement of the self-emission  
x-ray imaging and the scattered-light spectrum

• Time-dependent flux-limiter simulations underestimate the mass ablation 
rate by 10% and the length of the conduction zone by a factor of 2

• Simulations that include NL electron transport and CBET reproduce  
the experimental observables
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*  V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006);
 I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
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Direct-drive inertial confinement fusion implosions are driven by laser energy absorbed 
near the critical density and transported by electrons to the ablation surface
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Measurement of the mass ablation rate and the size of the 
conduction zone constrain the hydrodynamic coupling.
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In a cryogenic implosion, the average mass ablation rate of the CD outer layer 
was determined from measuring of the time needed to burn through the CD
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*  D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).

After the laser burns through the CD layer, the inner peak corresponds to  
the ablation surface and the outer peak corresponds to the CD/DT interface.
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Late time
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The ablation-front trajectories were determined  
from a series of self-emission images
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The CD/DT interface trajectory was measured  
from the CD emission peak after the CD burnthrough*
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* A. K. Davis et al., Rev. Sci. Instrum. 85, 11D616 (2014).

The CD burnthrough corresponds to the time 
when the CD expands from the ablation surface.
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The averaged mass ablation rate of the CD was  
reproduced when using NL and CBET models*
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When matching shell trajectory, time-dependent flux-limited (FL) simulations 
underestimate the averaged mass ablation rate of the CD by 10%.

* D. T. Michel, Phys. Rev. Lett. 114, 155002 (2015).
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The scattered-light spectrum provides a measure of the time  
when the CD/DT interface reaches the laser-absorption region
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When the DT reaches the absorption region, the velocity of the critical surface jumps, 
resulting in a jump in the maximum red-shifted wavelength in the scattered-light spectrum.**
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 * Calculated for normal incident rays.
**  V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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The combination of the scattered-light spectrum and the self-emission x-ray 
imaging makes it possible to determine the length of the conduction zone*
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The size of the conduction zone is well reproduced when using NL and CBET 
models, but significantly underestimated when using a time-dependent flux limiter.*

* D. T. Michel, Phys. Rev. Lett. 114, 155002 (2015).
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Summary/Conclusions
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Nonlocal (NL) electron transport and cross-beam energy transfer (CBET) 
models* are required to reproduce the mass ablation rate and the length  
of the conduction zone measured in cryogenic implosions on OMEGA

• An averaged CD mass ablation rate of 8.0!0.3 ng/ns was measured  
by imaging the self-emission x rays in cryogenic implosions

• The conduction zone length of 100!20 nm was determined  
from the combination of the measurement of the self-emission  
x-ray imaging and the scattered-light spectrum

• Time-dependent flux-limiter simulations underestimate the mass ablation 
rate by 10% and the length of the conduction zone by a factor of 2

• Simulations that include NL electron transport and CBET reproduce  
the experimental observables

*  V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006);
 I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).



When DT reaches the absorption region, the maximum red-shifted  
wavelength jumps in the scattered-light spectrum

E24168
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When DT reaches the absorption region, the velocity of the 
critical surface jumps, resulting in a jump in the maximum 
red-shifted wavelength in the scattered-light spectrum.
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LILAC simulations that include NL and CBET reproduce  
both the absorption and the kinetic energy of the shell
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The code accurately models the hydrodynamic 
coupling in cryogenic implosions.
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DRACO simulations of cryogenic implosions show that perturbations  
have a minimal impact on the burnthrough time measurement*
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*DRACO simulations were performed with and without perturbations seeded
by target offset, DT ice roughness, and laser imprint up to mode 150.



Conduction zone smoothing

Reduce the imprint:*
– reduce the time needed to 
 create the conduction zone

– reduce the amplitude 
 of the modulations caused 
 by the dynamic overpressure

Reduce the Rayleigh–Taylor growth**

Reduce the imprint
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The growth of perturbations on the shell are governed by the mass ablation 
rate and the length of the conduction zone
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The conduction zone smooths the laser imprint while the mass ablation 
rate reduces the imprint and the growth of the Rayleigh–Taylor instability.

– – –kg k V V V kV4 2RT blabl abl abl
2c = ^ h

 * V. N. Goncharov et al., Phys. Plasmas 7, 2062 (2000).
** R. Betti et al., Phys. Plasmas 5, 1446 (1998).


