Framed X-Ray Imaging of Cryogenic Target **Implosion Cores on OMEGA**

KBFRAMED optic assembly

KBFRAMED core image OMEGA cryogenic DT target implosion shot 77064

F. J. Marshall **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Time-resolved x-ray imaging of cryogenic target-core emission provides improved estimates of bang time, burnwidth, and peak core pressure LLE

- Cryogenic DT target-implosion cores are imaged on OMEGA by a combination of a high-speed framing camera coupled to a pinhole array and a 16-image framed x-ray microscope (KBFRAMED)
- The time history of the core x-ray emission, determined by the high-speed framing-camera pinhole array, gives absolute values of the bang time and burnwidth (with ~5-ps accuracy)
- The core pressure is inferred from the measured core size, ion temperature, neutron yield, and burnwidth

E23696a

Collaborators

V. N. Goncharov,* V. Yu. Glebov, S. P. Regan,* T. C. Sangster, and C. Stoeckl

> **University of Rochester Laboratory for Laser Energetics**

> > *Related talks:

V. N. Goncharov et al., U04.00005, this conference; S. P. Regan, Cl3.00005, this conference (invited).

KBFRAMED is a 16-channel Kirkpatrick–Baez (KB) x-ray microscope that provides time-resolved images of the core around stagnation

E22996e

KBFRAMED optic magnification and framed resolution have been measured using an x-ray backlit grid on OMEGA

E23991e

*FWHM: full width at half maximum ** PSF: point spread function

KBFRAMED records an image ($\Delta t = 30 \text{ ps}$) of the stagnating core every ~15 ps in the 4- to 8-keV photon-energy range

E24014b ROCHESTER

The detailed cryogenic core hot-spot evolution is seen every ~15 ps with KBFRAMED

Image-to-image timing is precisely determined from position and the use of measured cables $(\pm 2 \text{ ps})$.

E24420a

The cryogenic target implosion's hot-spot size is determined from an elliptical super-Gaussian fit

Kochester

E24509a

The x-ray "bang time" is independently determined by measuring the time from the first picket peak to the stagnation peak

*SFC3: Sydor framing camera

The pinhole-array framing-camera images determine the absolute x-ray bang time and burnwidth of the cryogenic target implosion

ROCHESTER

The hot-spot pressure and volume are inferred from the neutron yield, burnwidth, ion temperature, and core size

$$\langle P_{\rm hs} \rangle^* \simeq \left[8Y \sqrt{\ln 2/\pi} / \Delta t_{\rm burn} \int_{V_{\rm hs}} dV \langle \sigma v \rangle / T^2 \right]^{1/2} \text{ and } V_{\rm hs} \approx \frac{4\pi}{3} R_{17\%}^3$$

OMEGA cryogenic target shot 77066 $R_{17} = 22.0 \pm 0.4 \ \mu m$ (KBFRAMED + framed pinholes) $Y_n = 4.0 \times 10^{13}$ $\Delta t_{\text{burn}} = 63\pm5 \text{ ps} (\text{x rays}), 67\pm5 \text{ ps} (\text{neutrons}), 66 \text{ ps} (1-D)$ $T_{\rm j} = 3.2 \pm 0.4 \; {\rm keV}$ $\langle P_{hs} \rangle_{exp} = 56 \pm 7 \text{ Gbar}$ $\langle P_{hs} \rangle_{1-D} = 90 \text{ Gbar}$

Summary/Conclusions

Time-resolved x-ray imaging of cryogenic target-core emission provides improved estimates of bang time, burnwidth, and peak core pressure UR s LLE

- Cryogenic DT target-implosion cores are imaged on OMEGA by a combination of a high-speed framing camera coupled to a pinhole array and a 16-image framed x-ray microscope (KBFRAMED)
- The time history of the core x-ray emission, determined by the high-speed framing-camera pinhole array, gives absolute values of the bang time and burnwidth (with ~5-ps accuracy)
- The core pressure is inferred from the measured core size, ion temperature, neutron yield, and burnwidth

E23696a