Improved Wavelength Detuning Cross-Beam Energy Transfer Mitigation Strategy for Polar Direct Drive at the National Ignition Facility

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Balanced hemispheric wavelength detuning methods increase laser absorption without detrimental long-wavelength asymmetry

- Cross-beam energy transfer (CBET) occurs primarily over the equatorial region in polar direct drive (PDD)
- Wavelength detuning mitigates CBET in PDD and symmetric direct drive (SDD) by shifting the resonances into regions of reduced-interaction cross sections
- Hemispheric detuning directs a mixture of red- and blue-shifted light over the equator to enhance CBET mitigation in PDD, which exceeds SDD
 - balanced hemispheric detuning further enhances mitigation by equalizing the hemispheres for a more-uniform implosion

Collaborators

T. J. B. Collins, D. Cao, P. W. McKenty, and J. D. Zuegel University of Rochester Laboratory for Laser Energetics

The intermediate PDD target design* for the National Ignition Facility (NIF) evaluates the performance of balanced hemispheric detuning

TC12462

*D. Cao et al., BO4.00014, this conference.

The majority of CBET occurs over the equatorial region in PDD

- The beams that would have been responsible for large CBET over the poles are absent in PDD
- CBET subtracts as much as 30% of the laser drive, making CBET mitigation the most-important design issue

ortant design issue

Successful wavelength detuning mitigates CBET by shifting the resonances into regions of reduced-interaction cross sections

Works for both PDD and SDD

• Hemispheric detuning reduces the CBET interaction over the equator and can recover a significant portion of the lost energy in PDD

TC11766d

6

Bicolor hemispherical detuning recovers significant equatorial drive

• The detuning range fits within NIF's future capabilities

The balanced hemispheric detuning uses three wavelengths to improve drive and symmetry

• These detuning configurations all recover more laser absorption in PDD relative to SDD

The balanced hemispheric detuning scheme outperforms the tricolor configuration because of its improved uniformity

TC12468

Balanced hemispheric wavelength detuning methods increase laser absorption without detrimental long-wavelength asymmetry

- Cross-beam energy transfer (CBET) occurs primarily over the equatorial region in polar direct drive (PDD)
- Wavelength detuning mitigates CBET in PDD and symmetric direct drive (SDD) by shifting the resonances into regions of reduced-interaction cross sections
- Hemispheric detuning directs a mixture of red- and blue-shifted light over the equator to enhance CBET mitigation in PDD, which exceeds SDD
 - balanced hemispheric detuning further enhances mitigation by equalizing the hemispheres for a more-uniform implosion

The outbound light intensity illustrates successful CBET mitigation

CBET mitigation decreases scattered light.

TC12467

The balanced hemispheric detuning can be further improved using other strategies

Light-energy diagnostic Decreased spot-masking radius - reduces over-the-horizon energy 150 increases on-target intensity Power total (TW) Contoured shells or ice layer 100 Ring pulse shaping - assists balancing **residual** $\ell = \{1, 2\}$ 50 Higher peak pulse power 0 2 6 0 Λ

Time (ns)

ROCHESTER

TC12466

