The Effects of Laser–Plasma Instabilities on Hydro Evolution in Direct-Drive Inertial Confinement Fusion

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

OSIRIS particle-in-cell (PIC) simulations were performed to obtain a total laser absorption near the $n_c/4$ surface that can be input into the DRACO fluid simulation*

- Laser absorption caused by laser–plasma instability (LPI) is simulated by OSIRIS and then is input to DRACO
- The DRACO simulations show that LPI-induced laser absorption can increase the electron temperature but only slightly changes the density scale length in the corona

*S. X. Hu et al., Phys. Plasmas 20, 032704, (2013).

Collaborators

S. X. Hu and C. Ren University of Rochester Laboratory for Laser Energetics

Motivation

Recent PIC simulations* showed an LPI–induced laser absorption of ~15% near the $n_c/4$ surface in typical OMEGA spherical implosions

- It is not known how the 15% absorption of the laser energy near the $n_c/4$ region would change the hydro behavior
- PIC and hydro simulations are coupled together to study this effect

TC12515

*R. Yan et al., Phys. Rev. Lett. 108, 175002 (2012).

An OSIRIS* PIC simulation was used to study the laser absorption near the $n_c/4$ region for an OMEGA EP long-scale-length experiment

Plasma and laser conditions near the $n_c/4$ surface from

 $I = 5.5 \times 10^{14} \, \text{W/cm}^2$ *T*_e = 2.5 keV $\eta = \frac{L_{\mu}\lambda_{\mu}I_{14}}{81.86\,T_{\rm keV}}^{***}$

^{*}R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002).

^{**}S. X. Hu et al., Phys. Plasmas 20, 032704, (2013); D. T. Michel et al., Phys. Plasmas 20, 055703 (2013).

^{***}A. Simon et al., Phys. Fluids 26, 3107 (1983).

Strong pump depletion and a significant amount of forward- and backward-going hot electrons were observed

- The laser energy is depleted by 68% in the simulation box
- The absorbed energy goes to plasma heating (33%) and electrons leaving the box (25% forward and 5% backward)

The energy-balance information is coupled back to DRACO

- The collisional damping of the two-plamon–decay (TPD) plasma waves absorbs 30% of the laser energy between 0.17 n_c and 0.25 n_c
- Hot-electron energy is deposited in the regions with densities above 0.25 n_c and below 0.17 n_c according to their stopping range
- Hot-electron energy is calculated as follows,* with f_{c} determined by the PIC simulation $(G_{c} = 8.7)$

$$G_c = 3 \times 10^{-2} \, \frac{I_{qc} \, L_n \, \lambda_0}{T_e}$$

$$f_{\text{hot}} = \begin{cases} f_{\text{c}} \left(G_{\text{c}} / 4 \right)^{6}, \ G_{\text{c}} \leq 4 \\ \\ f_{\text{c}} \left(G_{\text{c}} / 4 \right)^{1.2}, \ G_{\text{c}} > 4 \end{cases}$$

*S. X. Hu et al., Phys. Plasmas 20, 032704 (2013).

The LPI-induced laser absorption increases the electron temperature by 100 eV, but only slightly changes the density scale length in the corona

• The new DRACO simulation raised the electron temperature near the $n_c/4$ surface by 100 eV

*D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).

The temperature and density profiles are not sensitive to the hot-electron energy

- The simulation results show that the hot-electron energy fraction above 25 keV is ~11% of the incident laser energy, more than the ~2% obtained from the experiment
- The hot-electron temperature of ~50 keV in the PIC simulation agrees with the experiment
- The hydro profiles are not sensitive to whether the energy is carried by the hot electrons or the laser

Summary/Conclusions

OSIRIS particle-in-cell (PIC) simulations were performed to obtain a total laser absorption near the $n_c/4$ surface that can be input into the DRACO fluid simulation*

- Laser absorption caused by laser–plasma instability (LPI) is simulated by OSIRIS and then is input to DRACO
- The DRACO simulations show that LPI-induced laser absorption can increase the electron temperature but only slightly changes the density scale length in the corona

TC12514

*S. X. Hu et al., Phys. Plasmas 20, 032704, (2013).