Neutron-Yield-Averaged Ion Temperature from DD and DT Fusion in National Ignition Facility High-Foot Implosions

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Ion temperature (T_i) , as inferred from DD and DT data, implies that residual kinetic energy increases with temperature

- Differences in the value for T_i from the DD neutron peak and T_i from the DT neutron peak increase as temperature increases
- DD and DT reactivities were integrated in space and time over assumed profiles to better reflect implosion dynamics
- Reactivity integrals do not explain the measured differences

2

M. Gatu Johnson,¹ R. M. Bionta,² E. J. Bond,² D. K. Bradley,² J. A. Caggiano,² D. A. Callahan,² D. T. Casey,² C. J. Cerjan,² T. Doeppner,² M. J. Eckart,² M. J. Edwards,² J. A. Frenje,¹ V. Yu. Glebov,³ G. P. Grim,² E. P. Hartouni,² R. Hatarik,² D. E. Hinkel,² O. A. Hurricane,² W. W. Hsing,² J. D. Kilkenny,⁴ A. Kritcher,² O. L. Landen,² S. LePape,² T. Ma,² A. J. Mackinnon,² D. H. Munro,² H.-S. Park,² P. Patel,² R. D. Petrasso,¹ J. E. Ralph,² B. A. Remington,² T. C. Sangster,³ D. B. Sayre,² B. K. Spears,² and C. B. Yeamans² ¹Massachusetts Institute of Technology Plasma Science and Fusion Center ²Lawrence Livermore National Laboratory ³Laboratory for Laser Energetics, University of Rochester ⁴General Atomics

T_i from DD data and T_i from DT data differ more at higher temperatures

*T. J. Murphy, Phys. Plasmas 21, 072701 (2014).

T_i analysis for static, homogeneous hot spots must be generalized for more-realistic conditions

- Calculate yield-weighted temperatures by integrating over spatial and temporal profiles
- Use Bosch and Hale DD and DT fusion reactivities
- Hot-spot scaling*
- Calculation conditions
 - isobaric hot spot
 - ideal gas equation of state (EOS) (relates density and temperature)
 - temperature spatial profile given by models of Betti and Patel
 - temperature temporal profile is a Gaussian
 - radius temporal profile is a hyperbola
 - hyperbola determined by implosion velocity and stagnation radius
- Measured data from the National Ignition Facility (NIF) database

*C. D. Zhou and R. Betti, Phys. Plasmas 14, 072703 (2007).

Yield-averaged temperatures for the DT and DD fusion reactions are calculated from the reactivity integrals

$$\frac{\frac{\mathbf{DT}(\mathbf{r}, \mathbf{t})}{\mathbf{dr}}}{\frac{\mathbf{r}, \mathbf{t})}{\mathbf{r}, \mathbf{t}}} \mathbf{dr} \mathbf{dt}$$

The yield from the fusion of A and B nuclei is determined by the reactivity and hot-spot conditions

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}}{\mathrm{d}V}\mathbf{Y}_{\mathsf{A}\mathsf{B}}\right) = \frac{1}{1+\delta(\mathsf{A},\mathsf{B})} \cdot n_{\mathsf{A}}\left(\mathbf{V},t\right) n_{\mathsf{B}}\left(\mathbf{V},t\right) \cdot \boldsymbol{\sigma}\mathbf{V}_{\mathsf{A}\mathsf{B}}\left[\mathbf{k}\mathbf{T}_{\mathsf{A}\mathsf{B}}\left(\mathbf{V},t\right)\right]$$

• With spherical symmetry

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\mathrm{d}}{\mathrm{d}r}\mathbf{Y}_{\mathsf{A}\mathsf{B}}\right) = \frac{\left[\mathbf{4}\cdot\boldsymbol{\pi}\cdot\boldsymbol{r}(t)^{2}\right]}{\mathbf{1}+\boldsymbol{\delta}(\mathsf{A},\mathsf{B})}\cdot\boldsymbol{n}_{\mathsf{A}}\left(\boldsymbol{r},t\right)\boldsymbol{n}_{\mathsf{B}}\left(\boldsymbol{r},t\right)\cdot\boldsymbol{\sigma}\boldsymbol{v}_{\mathsf{A}\mathsf{B}}\left[\boldsymbol{k}\boldsymbol{T}_{\mathsf{A}\mathsf{B}}\left(\boldsymbol{r},t\right)\right]$$

• With an isobaric hot spot and ideal gas EOS, the yield becomes

Initial and final boundary conditions were taken from the experimental data

- Implosion velocity from 2-D ConA experiments = 320 km/s min; 390 km/s max
 - stagnation radius (P_0) = 25.7 μ m min; 45.1 μ m max
 - maximum ρR (21* DSR) = 0.44 g/cm² min; 1.1 g/cm² max
 - burnwidth = 140 ps min; 220 ps max
- High areal densities must account for the transmission differences between the 14.03- and 2.45-MeV neutrons

Detector-averaged *T*_i can be used to study the differences between DD data and DT data

Detector-averaged *T*_i can be used to study the differences between DD data and DT data

E24632a ROCHESTER MELLORA S

The kinetic energy fraction ranges from 0.4 to 0.7 for the NIF high-foot implosions

Ion temperature (T_i) , as inferred from DD and DT data, implies that residual kinetic energy increases with temperature

- Differences in the value for T_i from the DD neutron peak and T_i from the DT neutron peak increase as temperature increases
- DD and DT reactivities were integrated in space and time over assumed profiles to better reflect implosion dynamics
- Reactivity integrals do not explain the measured differences

12

Temporal and spatial profiles are now needed to compute yield-averaged temperatures

- Time profiles for
 - $-r_{hs}(t)$ hot-spot radius
 - hyperbola used
 - asymptotic slope determined by implosion velocity
 - minimum radius from stagnation radius
 - -kT(0,t) r = 0 hot-spot temperature
 - Gaussian with width determined by the measured burnwidth
 - $-P_{hs}(t)$ —hot-spot pressure
 - ideal gas EOS used to scale with temperature and volume
 - maximum pressure given by stagnation pressure
- Radial profile for temperature

E24626

The ion temperature from the DT peak shows little variation between detectors over the high-foot campaign

ROCHESTER

E24620

nTOF 27-m 27 nTOF 18-m Spec x nTOF 22-m Spec A * nTOF 20-m Spec E

The ion temperature from the DD peak shows little variation between detectors over the high-foot campaign

ROCHESTER

E24621

Two different spatial profiles for the temperature were studied with little difference observed

Temporal profiles are scaled to final hot-spot conditions

• Final hot-spot conditions scaled from no-alpha heating models*

*C. D. Zhou and R. Betti, Phys. Plasmas <u>14</u>, 072703 (2007).

E24630

T_i calculated from Y_{DT}/Y_{DD} is consistent with T_i thermal

