Design of an Extreme Ultraviolet Spectrometer Suite for Isochoric-Heated, Warm-Dense-Matter Studies

S. Ivancic **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

A new extreme ultraviolet (XUV) spectrometer is sought to make high-precision temperature measurements (<5%) of releasing high-energy-density (HED) material

- An experimental platform is being developed to study the off-Hugoniot equation of state (EOS) of rapidly heated solids
- An optimized spectrometer incorporating a toroidal mirror and custom holographic grating have been designed
 - a high-throughput (600- μ m² · sr) design yields a signal-to-noise ratio (SNR) of 200
 - simulated emission spectra suggest requiring at least an SNR of 50 to discriminate 2 eV at 50 eV
- Target diagnostics in the XUV will give a measure of the surface temperature of the heated sample, providing a complementary measure to higher-energy spectroscopic measurements (e.g., K_{α} line spectroscopy) of a mass-averaged temperature

Collaborators

P. M. Nilson, C. R. Stillman, C. Mileham, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

Motivation

An experimental platform is being developed to study the creation of HED matter by laser-generated electron heating

The data will be compared to simulated spectra to infer the surface temperature.

*M. E. Foord, D. B. Reisman, and P. T. Springer, Rev. Sci. Instrum. 75, 2586 (2004).

• Initial experiments will infer temperature dynamics at the target surface

will be combined with sideon radiography to measure the release isentrope*

A synthetic streak image of the XUV emission from a target shows a smooth continuum emission early in time

The temperature of the target can be inferred from the local slope of the continuum emission.

E24736

*Prism Computational Sciences, Inc., Madison, WI 53711.

A signal-to-noise ratio of >50 in the continuum is required for 2-eV discrimination at 50 eV in the region of interest

- Solid AI at 50 and 52 eV, respectively, 5 ps into expansion
- Synthetic Gaussian noise spectrum applied

A high-throughput, low-background spectrometer is required to constrain the measured temperature to a few eV.

E24737

High throughput can be obtained with a toroidal mirror and grating pair

- A shield blocks the direct line of sight (LOS) to the target, minimizing the background signal
- A variable line space grating eliminates the need to collimate, disperse, and refocus the beam, allowing for high throughput in a compact system

Zr-parylene filter (visible light)

*HORIBA Scientific, Edison, NJ 08820.

The expected spectral emission combined with spectrometer throughput suggests SNR > 50 should be attainable with the design

 Modular architecture allows the spectrometer body to mate with either scientific CCD back or streak camera back

Value
$1 \times 10^{23} \text{ W/m}^3 \text{ sr}$
3 × 10 ^{−3} sr
$2 \times 10^{-3} \mathrm{cm}^2$
0.75
0.25
0.5 ps
1.1 × 10 ^{−2}
$2.8 \times 10^{-12} \text{ J}$
$1.3 imes 10^5$ photons
0.04
170 to 368
e ⁻ /absorbed photon
$.2 \times 10^4$ CCD ADU
100 CCD ADU
220

The inferred initial surface temperature from the simulation agrees to within the expected error $(\pm 2 \text{ eV})$

• 1-D LILAC simulation post-processed with Spect3D

$k_{\rm B}T_{\rm e} = 52.0 \ {\rm eV}$ $k_{\rm B}T_{\rm e} = 50.0 \, {\rm eV}$ $k_{\rm B}T_{\rm e} = 48.0 \ {\rm eV}$ **Simulation data** LILAC/Spect3D

• 1-D LILAC simulation post-processed with Spect3D

Summary/Conclusions

A new extreme ultraviolet (XUV) spectrometer is sought to make high-precision temperature measurements (<5%) of releasing high-energy-density (HED) material

- An experimental platform is being developed to study the off-Hugoniot equation of state (EOS) of rapidly heated solids
- An optimized spectrometer incorporating a toroidal mirror and custom holographic grating have been designed
 - a high-throughput (600- μ m² · sr) design yields a signal-to-noise ratio (SNR) of 200
 - simulated emission spectra suggest requiring at least an SNR of 50 to discriminate 2 eV at 50 eV
- Target diagnostics in the XUV will give a measure of the surface temperature of the heated sample, providing a complementary measure to higher-energy spectroscopic measurements (e.g., K_{α} line spectroscopy) of a mass-averaged temperature

XUV spectroscopy makes it possible for the temperature and density to be inferred at the target surface

- The temperature is inferred in two ways:* continuum (40 \pm 5 eV) and line ratio at 11.6 and 16.2 nm (34 \pm 6 eV) $n_{\rm P} = 4 \times 10^{22} {\rm ~cm}^{-3}$
- Compliance between thermal line radiation and continuum may be caused by emission at different times in the expansion

Wavelength λ (nm)

*U. Zastrau et al., Phys. Rev. E 78, 066406 (2008).