Numerical Study of Large-Scale, Laser-Induced Nonuniformities in Cryogenic OMEGA Implosions

3-D ASTER simulations of shot 78378

ρ (g/cm3)

T_i (keV)

4- to 8-keV x ray

Offset $t = 2.56$ ns

I. V. Igumenshchev
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

Large-scale, laser-induced nonuniformities can explain performance degradation of cryogenic implosions on OMEGA

- The 3-D hydrodynamic code *ASTER* was developed to study direct-drive implosions
- Simulations consider the OMEGA laser’s configuration and include typical target offsets and measured beam imbalance, mispointing, and mistiming
- The effects of the stalk mount were mimicked by applying surrogate perturbations
- Simulations suggest that the implosions are mostly affected by target offset and beam imbalance
Collaborators

University of Rochester
Laboratory for Laser Energetics
Short-scale perturbations alone cannot explain the performance of cryogenic implosions on OMEGA

- Implosions with $\alpha \gtrsim 3.5$ and in-flight aspect ratio (IFAR) $\lesssim 22$ underperform
- Images of implosion cores evidence the evolution of low-ℓ-mode structures

X-ray images in the 4- to 8-keV range (shown in shot 77064)*

100 \times 100-µm image regions

- T_i measurements suggest significant bulk motions in the hot spot**

**T. J. Murphy, Phys. Plasmas 21, 072701 (2014).
The 3-D code ASTER studies the effects of large-scale nonuniformities in OMEGA implosions

- Based on the Eulerian piecewise-parabolic method (PPM)*
- Utilizes a two-temperature (ion and electron) fluid model of plasma, which can consist of multiple materials (DT, CH, etc.)
- Implemented on a 3-D orthogonal spherical grid (R, θ, φ)
- Parallelized using the domain-decomposition approach
- A nominal-resolution (700 × 60 × 120) implosion simulation takes less than 48 h
- Current physical options
 - tabulated Z and equation of states (EOS’s)
 - Spitzer thermal conduction (with optional flux limitation)
 - simplified 3-D laser-deposition model

ASTER uses a simplified 3-D laser deposition model

- The assumption of a spherical corona
- Adopts a ray-tracing routine with cross-beam energy transfer (CBET)*
 from the 1-D code LILAC**

Simulated effects:
- OMEGA beam overlap
- beam-energy imbalance
- beam mispointing
- beam mistiming
- target offset

OMEGA shot 78378 was simulated assuming measured 3-D laser-imposed perturbations

\[\alpha = 4 \]
\[\text{IFAR} = 22 \]

\[E_L = 26 \text{ kJ} \]
\[I_{\text{max}} \approx 10^{15} \text{ W/cm}^2 \]

- Nominal model:
 - Beam overlap
 - 10% \(\sigma_{\text{rms}} \) imbalance
 - 10-\(\mu \text{m} \) \(\sigma_{\text{rms}} \) mispointing
 - 5-ps \(\sigma_{\text{rms}} \) mistiming

- Typical target offset \(\sim \) 10 to 20 \(\mu \text{m} \)
Simulations of a nominal model with a 10-μm offset suggest that offset and beam imbalance have the largest effect.

- Larger perturbations are needed to explain OMEGA implosions (YOC ~ 30)

YOU = 0.51

YOU: yield over uniform
YOC: yield over clean
A nominal model with a 20-μm offset shows the typical performance of OMEGA α = 4 cryogenic implosions.

3-D ASTER simulations of shot 78378

YOU = 0.22

\(P_n = 47 \text{ Gbar} \) (versus 45±6 Gbar for shot 78378)

- Self-emission x-ray images loosely reproduce the hot-spot shape
- The cold shell must be imaged

\(D_{\text{eff}} = 46.2 \mu m \)

17% contour defines the hot spot size
Large-scale perturbations increase the variation of inferred T_i, which is in good agreement with measurements.

Nominal model with 20-μm offset

Normalized neutron spectra* with and without the effects of plasma bulk motion (BM)

The directions of measurements and inferred T_i

$\langle T_i \rangle_n = 2.73$ keV

Shot 78378
Inferred T_i: 3.6, 3.7, and 4.6 keV

Perturbations from a mount stalk and other sources interact, reducing the implosion performance

Equatorial density map at neutron peak ($t = 2.56$ ns)

Nominal model

Beam overlap and stalk

Perturbations in laser deposition mimic the effects of a stalk mount

\[\text{YOU} = 0.51 \]

\[\text{YOU} = 0.48 \]
Summary/Conclusions

Large-scale, laser-induced nonuniformities can explain performance degradation of cryogenic implosions on OMEGA

- The 3-D hydrodynamic code *ASTER* was developed to study direct-drive implosions
- Simulations consider the OMEGA laser’s configuration and include typical target offsets and measured beam imbalance, mispointing, and mistiming
- The effects of the stalk mount were mimicked by applying surrogate perturbations
- Simulations suggest that the implosions are mostly affected by target offset and beam imbalance