Numerical Study of Large-Scale, Laser-Induced Nonuniformities in Cryogenic OMEGA Implosions

I. V. Igumenshchev **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Large-scale, laser-induced nonuniformities can explain performance degradation of cryogenic implosions on OMEGA

- The 3-D hydrodynamic code ASTER was developed to study direct-drive implosions
- Simulations consider the OMEGA laser's configuration and include typical target offsets and measured beam imbalance, mispointing, and mistiming
- The effects of the stalk mount were mimicked by applying surrogate perturbations
- Simulations suggest that the implosions are mostly affected by target offset and beam imbalance

TC12506

Collaborators

V. N. Goncharov, F. J. Marshall, K. Silverstein, J. P. Knauer, D. H. Froula, and S. P. Regan

> University of Rochester Laboratory for Laser Energetics

Short-scale perturbations alone cannot explain the performance of cryogenic implosions on OMEGA

- Implosions with $\alpha \gtrsim$ 3.5 and in-flight aspect ratio (IFAR) \lesssim 22 underperform
- Images of implosion cores evidence the evolution of low- ℓ -mode structures

X-ray images in the 4- to 8-keV range (shown in shot 77064)*

• T_i measurements suggest significant bulk motions in the hot spot**

Kochester

*F. J. Marshall et al., UO4.00004, this conference. **T. J. Murphy, Phys. Plasmas 21, 072701 (2014).

The 3-D code ASTER studies the effects of large-scale nonuniformities in OMEGA implosions

- Based on the Eulerian piecewise-parabolic method (PPM)*
- Utilizes a two-temperature (ion and electron) fluid model of plasma, which can consist of multiple materials (DT, CH, etc.)
- Implemented on a 3-D orthogonal spherical grid (R, θ, φ)
- Parallelized using the domain-decomposition approach
- A nominal-resolution (700 \times 60 \times 120) implosion simulation takes less than 48 h
- Current physical options
 - tabulated Z and equation of states (EOS's)
 - Spitzer thermal conduction (with optional flux limitation)
 - simplified 3-D laser-deposition model

TC12508

*P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).

ASTER uses a simplified 3-D laser deposition model

ROCHESTER

TC12509

3-D laser deposition

*I. V. Igumenshchev et al., Phys. Plasmas <u>17</u>, 122708 (2010). **J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

OMEGA shot 78378 was simulated assuming measured **3-D laser-imposed perturbations**

– 10- μ m $\sigma_{\rm rms}$ mispointing

• Typical target offset ~10 to 20 μ m

Simulations of a nominal model with a 10- μ m offset suggest that offset and beam imbalance have the largest effect

ROCHESTER

TC12605

• Larger perturbations are needed to explain **OMEGA** implosions

YOU: yield over uniform YOC: yield over clean

A nominal model with a 20- μ m offset shows the typical performance of OMEGA α = 4 cryogenic implosions

YOU = 0.22 $P_n = 47$ Gbar (versus 45±6 Gbar for shot 78378)

17% contour defines the hot spot size

- Self-emission x-ray images loosely reproduce the hot-spot shape
- The cold shell must be imaged

Large-scale perturbations increase the variation of inferred T_i , which is in good agreement with measurements

Nominal model with 20- μ m offset

TC12606 ROCHESTER *T. J. Murphy, Phys. Plasmas 21, 072701 (2014).

Perturbations from a mount stalk and other sources interact, reducing the implosion performance

Equatorial density map at neutron peak (t = 2.56 ns) Nominal model Beam overlap and stalk ρ (g/cm^3) (g/cm^3) 180 180 100 µm 120 120 60 60 **Stalk** 0 0 Offset Offset **YOU** = 0.51 **Perturbations in laser** deposition mimic the effects of a stalk mount

TC12550

YOU = **0.48**

Large-scale, laser-induced nonuniformities can explain performance degradation of cryogenic implosions on OMEGA

- The 3-D hydrodynamic code ASTER was developed to study direct-drive implosions
- Simulations consider the OMEGA laser's configuration and include typical target offsets and measured beam imbalance, mispointing, and mistiming
- The effects of the stalk mount were mimicked by applying surrogate perturbations
- Simulations suggest that the implosions are mostly affected by target offset and beam imbalance

TC12506

