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Summary

Large-scale, laser-induced nonuniformities can explain performance 
degradation of cryogenic implosions on OMEGA

•	 The 3-D hydrodynamic code ASTER was developed to study direct-drive implosions

•	 Simulations consider the OMEGA laser’s configuration and include typical target 
offsets and measured beam imbalance, mispointing, and mistiming

•	 The effects of the stalk mount were mimicked by applying surrogate perturbations

•	 Simulations suggest that the implosions are mostly affected by target offset
	 and beam imbalance
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Short-scale perturbations alone cannot explain the performance 
of cryogenic implosions on OMEGA

•	 Implosions with a L 3.5 and in-flight aspect ratio (IFAR) K 22 underperform 

•	 Images of implosion cores evidence the evolution of low-,-mode structures

•	 Ti measurements suggest significant bulk motions in the hot spot**
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*F. J. Marshall et al., UO4.00004, this conference.
**T. J. Murphy, Phys. Plasmas 21, 072701 (2014).
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The 3-D code ASTER studies the effects of large-scale 
nonuniformities in OMEGA implosions

•	 Based on the Eulerian piecewise-parabolic method (PPM)*

•	 Utilizes a two-temperature (ion and electron) fluid model of plasma,
	 which can consist of multiple materials (DT, CH, etc.)

•	 Implemented on a 3-D orthogonal spherical grid (R, i ,{) 

•	 Parallelized using the domain-decomposition approach

•	 A nominal-resolution (700 × 60 × 120) implosion simulation takes less than 48 h

•	 Current physical options
–	tabulated Z and equation of states (EOS’s)
–	Spitzer thermal conduction (with optional flux limitation)
–	simplified 3-D laser-deposition model
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*P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).
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ASTER uses a simplified 3-D laser deposition model

•	 The assumption of a spherical corona

•	 Adopts a ray-tracing routine with 
cross-beam energy transfer (CBET)* 
from the 1-D code LILAC**

Simulated effects:
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*I. V. Igumenshchev et al., Phys. Plasmas 17, 122708 (2010).
**J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).
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–	OMEGA beam overlap
–	beam-energy imbalance
–	beam mispointing
–	beam mistiming
–	target offset
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OMEGA shot 78378 was simulated assuming measured 
3-D laser-imposed perturbations
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•	 Nominal model:
–	Beam overlap
–	10% vrms imbalance
–	10-nm vrms mispointing
–	5-ps vrms mistiming

•	 Typical target offset ~10 to 20 nm
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Simulations of a nominal model with a 10-nm offset suggest that offset 
and beam imbalance have the largest effect

•	 Larger perturbations 
are needed to explain 
OMEGA implosions 
(YOC ~ 30)
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YOC: yield over clean
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A nominal model with a 20-nm offset shows the typical performance 
of OMEGA a = 4 cryogenic implosions
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•	 Self-emission x-ray images loosely reproduce the hot-spot shape

•	 The cold shell must be imaged
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Large-scale perturbations increase the variation of inferred Ti, 
which is in good agreement with measurements
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*T. J. Murphy, Phys. Plasmas 21, 072701 (2014).

Shot 78378
Inferred Ti: 3.6, 3.7, and 4.6 keV
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Perturbations from a mount stalk and other sources interact, 
reducing the implosion performance
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Equatorial density map at neutron peak (t = 2.56 ns)
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Summary/Conclusions
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Large-scale, laser-induced nonuniformities can explain performance 
degradation of cryogenic implosions on OMEGA

•	 The 3-D hydrodynamic code ASTER was developed to study direct-drive implosions

•	 Simulations consider the OMEGA laser’s configuration and include typical target 
offsets and measured beam imbalance, mispointing, and mistiming

•	 The effects of the stalk mount were mimicked by applying surrogate perturbations

•	 Simulations suggest that the implosions are mostly affected by target offset
	 and beam imbalance


