First-Principles Investigations on Thermal Conductivity and Average Ionization of Polystyrene (CH) Ablators Under Extreme Conditions

University of Rochester Laboratory for Laser Energetics

ROCHESTER

Savannah, GA 15-20 November 2015

Summarv

The quantum-molecular-dynamics (QMD) method, based on density-functional theory (DFT), has been used to study thermal conductivity and ionization of CH ablators under inertial confinement fusion (ICF) conditions

- The resulting thermal conductivity of CH (κ_{QMD}) is 2 to 10× higher than the traditional Lee–More model predictions in warm dense plasmas
- The average ionization $\langle Z \rangle_{QMD}$ of warm dense CH is larger than the astrophysics model predictions
- Hydro simulations using these κ_{QMD} and $\langle Z \rangle_{QMD}$ have shown differences in target performance relative to traditional model simulations

Collaborators

V. N. Goncharov, R. L. McCrory, and S. Skupsky

University of Rochester Laboratory for Laser Energetics

L.A. Collins and J.D. Kress

Theoretical Division Los Alamos National Laboratory

Warm dense CH plasmas ($\rho = 0.5$ to 10 g/cm³ and T = 1 to 20 eV) are routinely accessed in ICF implosions

Approximated physics models, such as the Lee–More model* for κ and the astrophysics model^{**} for $\langle Z \rangle$ have been used to estimate these plasma properties in hydrocodes for ICF simulations.

[†]First-principles equation of state

^{*}Y. T. Lee and R. M. More, Phys. Fluids <u>27</u>, 1273 (1984).

^{**}W. F. Huebner et al., Los Alamos National Laboratory, Los Alamos, NM, Report LA-6760-M (1977).

QMD combines Kohn–Sham molecular dynamics (KSMD)* and orbital-free molecular dynamics (OFMD)** to study warm dense CH plasmas

- Both methods are based on DFT: KSMD (orbital based) and OFMD (orbital free)
- The KSMD method can handle plasma temperatures up to $T_{\rm F}$, while the OFMD can be used for high-temperature (as well as low-density) plasmas
- A full range of density-temperature conditions of CH plasmas can be investigated with the combined KSMD–OFMD method

TC12245a

A wide range of CH plasma conditions have been investigated with the QMD method

 The thermal conductivity** of CH can be calculated in KSMD using the Onsager coefficients *L_{ii}*:

$$\kappa = \frac{1}{T} \left(L_{22} - L_{12}^2 / L_{11} \right)$$

• The average ionization $\langle Z \rangle$ can be derived from the pressure-matching mixing rule between C and H in OFMD

^{*}S. X. Hu et al., Phys. Rev. E <u>92</u>, 043104 (2015).

^{**} S. X. Hu et al., "First-Principles Investigations on Ionization and Thermal Conductivity of Polystyrene (CH) for Inertial Confinement Fusion Applications," to be submitted to Physical Review E.

The OFMD-predicted average ionization $\langle Z \rangle$ is higher than the astrophysics model for warm dense CH plasmas

TC12276b

*AOT: astrophysics opacity table

QMD-predicted thermal conductivities are 2 to 10× higher than the Lee–More model predictions currently used in our hydrocode LILAC

The resulting κ_{QMD} is fitted with a generalized Coulomb logarithm $(\ln\Lambda)_{QMD}$ for hydrocodes.

With $Z_{eff} = \langle Z^2 \rangle / \langle Z \rangle$ obtained in OFMD, we can fit the QMD-derived thermal conductivity κ with a generalized Coulomb logarithm for CH plasmas

$$\mathcal{K}_{\text{QMD fitting}}(\boldsymbol{\rho}, \boldsymbol{T}) = \frac{20 \times \left(\frac{2}{\pi}\right)^{3/2} k_{\text{B}}^{7/2} T^{5/2}}{\sqrt{m} \times Z_{\text{eff}} \times e^4} \times \frac{0.095 \left(Z_{\text{eff}} + 0.24\right)}{1 + 0.24 \times Z_{\text{eff}}} \frac{1}{\left(\ln\Lambda\right)_{\text{QMD}}}$$
Spitzer prefactor

 The generalized Coulomb logarithm is a function of the ion-coupling parameter $\left[\Gamma_{i} = \frac{\langle Z \rangle^{2} e^{2}}{r_{0} kT}\right]$ and the electron-degeneracy parameter $\left(\Theta_{e} = \frac{T}{T_{F}}\right)$:

$$(\ln\Lambda)_{\text{QMD}} = \exp\left\{\gamma_0 + \sum_{i=1}^6 \left[\gamma_i \times (\ln\Gamma_i)^i + \sigma_i \times (\ln\theta_e)^i\right]\right\}$$

with fitting parameters of γ_i and σ_i

In contrast to $\kappa_{QMD fitting}$, κ_{LILAC} is a hybrid model that uses the Lee–More Coulomb logarithm [$(In \Lambda)_{LM}$] with the same Spitzer prefactor.

TC12281a

Hydro simulations using fitted κ_{QMD} and $\langle Z \rangle_{QMD}$ for CH have predicted a slower implosion velocity and ~20% lower pressure in the hot spot

*S. X. Hu et al., "First-Principles Investigations on Ionization and Thermal Conductivity of Polystyrene (CH) for Inertial Confinement Fusion Applications," to be submitted to Physical Review E.

TC12418

Summary/Conclusions

The quantum-molecular-dynamics (QMD) method, based on density-functional theory (DFT), has been used to study thermal conductivity and ionization of CH ablators under inertial confinement fusion (ICF) conditions

- The resulting thermal conductivity of CH (κ_{QMD}) is 2 to 10× higher than the traditional Lee–More model predictions in warm dense plasmas
- The average ionization $\langle Z \rangle_{QMD}$ of warm dense CH is larger than the astrophysics model predictions
- Hydro simulations using these κ_{QMD} and $\langle Z \rangle_{QMD}$ have shown differences in target performance relative to traditional model simulations

TC12416

QMD-predicted reflectivity* of shocked CH compares well with experiments in the saturation level

TC11155a Kochester *S. X. Hu, T. R. Boehly, and L. A. Collins, Phys. Rev. E 89, 063104 (2014).

First-principles calculations of average ionization and thermal conductivity for CH under extreme conditions

• Using the QMD methods (KSMD and OFMD), we have performed firstprinciples calculations of $\langle Z \rangle$, Z_{eff} , and κ for the ICF ablator material CH

$$\kappa_{\text{QMD fitting}}(\rho, T) = \frac{20 \times \left(\frac{2}{\pi}\right)^{3/2} \kappa_{\text{B}}^{7/2} T^{3/2}}{m \times Z_{\text{eff}} \times e^4} \times \frac{0.095 \left(Z_{\text{eff}} + 0.24\right)}{1 + 0.24 \times Z_{\text{eff}}} \times \frac{1}{\left(\ln\Lambda\right)_{\text{QMD}}}$$
Spitzer prefactor

• The thermal conductivity κ depends on the effective charge Z_{eff}, which is defined as

$$\mathbf{Z}_{\text{eff}} = \frac{\langle \mathbf{Z}^2 \rangle}{\langle \mathbf{Z} \rangle}; \langle \mathbf{Z} \rangle = \mathbf{f}_{\mathbf{C}} \times \mathbf{6} + \mathbf{f}_{\mathbf{H}} \times \mathbf{1}; \langle \mathbf{Z}^2 \rangle = \mathbf{f}_{\mathbf{C}} \times \mathbf{36} + \mathbf{f}_{\mathbf{H}} \times \mathbf{1}$$

Saha-type fitting
of
$$\langle Z \rangle$$
 for hydrocode: $\frac{\xi^2}{1-\xi} = \frac{\alpha_0}{n_i \Lambda_e^3} \exp\left[-\frac{f_z(\rho,T)}{kT}\right] \left[\langle Z \rangle = Z_{\max} \times \xi, \text{ with } Z_{\max} = 3.5 \text{ for hydrocode}\right]$
 $f_z(\rho,T) = \alpha_1 + \alpha_2 \cdot kT \left[\left(1 + \sqrt{3\Gamma_0}\right)^{1/4} - 1\right] + \alpha_3 \cdot (kT)^{0.9} + kT \times \left(\frac{\alpha_4}{r_0}\right)^{1/4}$

TC12277a

QMD-predicted thermal conductivities are 2 to 10× higher than the Lee–More model predictions currently used in our hydrocode LILAC

The resulting κ_{QMD} is fitted for hydrocodes with a generalized Coulomb logarithm $(\ln\Lambda)_{QMD}$.

