Hydrodynamic Instability Growth in Polar-Direct-Drive Implosions at the National Ignition Facility

M. Hohenberger **University of Rochester** Laboratory for Laser Energetics

Optical depth

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summary

Experimental platforms for diagnosing laser imprint and hydrodynamic instability growth in polar direct drive (PDD) at the National Ignition Facility (NIF) are being developed

- Rayleigh–Taylor (RT) growth from laser imprint and initial shell-surface perturbations are key performance limitations for current PDD implosions on the NIF
- Backlighter development on both OMEGA EP and the NIF will extend the current platform from 1-D to 2-D imaging
- Enhanced single-beam smoothing via 1-D multi-FM smoothing by spectral dispersion (SSD) is expected on the NIF by the end of FY18

E24439a

Collaborators

A. Shvydky, P. B. Radha, M. J. Rosenberg, V. N. Goncharov, F. J. Marshall, D. T. Michel, J. P. Knauer, S. P. Regan, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

S. R. Nagel, A. Nikroo, V. A. Smalyuk, R. J. Wallace, and S. Le Pape

Lawrence Livermore National Laboratory Livermore, CA

In current PDD implosions, the ablation-surface trajectory is delayed compared to the shell trajectory and simulations

Laser imprint is believed to cause a decoupling of the ablation surface from the shell.

E24440c

M. Hohenberger et al., Phys. Plasmas 22, 056308 (2015); P. B. Radha, Cl3.00004, this conference (invited).

A platform to measure RT growth and laser imprint in PDD implosions on the NIF is being developed

- A CH capsule implosion is driven with 34 quads
- A Saran backlighter for face-on, x-ray radiography (CI He_{α} = 2.8 keV) is used
- One-dimensional/slit imaging records growth of preimposed shell surface modulations

amplitude

Optical-depth (OD) growth of the single-mode perturbation is a measure of shell compression and RT growth

- Saran backlighter brightness limits the measurements to large modulation amplitudes $(>1 \ \mu m)$ and 1-D measurements
- better backlighter is needed to resolve the most-damaging modes (~200 to 250)

E23787e

A. Shvydky et al., GO5.00005, this conference.

OMEGA EP experiments were used to optimize backlighter brightness and contrast for Au M-shell and Mo L-shell emission

Best brightness and contrast were achieved for a Mo L-shell backlighter at 9×10^{14} W/cm², ~4× brighter than Saran.

Optical density

7

NIF experiments in FY16 will qualify 1-D multi-FM SSD performance and measure broadband Rayleigh–Taylor growth

- A single quad (Q24B) will have multi-FM SSD capabilities by January 2016
- Full NIF multi-FM SSD is expected by the end of FY18

E24732

A. Shvydky et al., GO5.00005, this conference.

Summary/Conclusions

Experimental platforms for diagnosing laser imprint and hydrodynamic instability growth in polar direct drive (PDD) at the National Ignition Facility (NIF) are being developed

- Rayleigh–Taylor (RT) growth from laser imprint and initial shell-surface perturbations are key performance limitations for current PDD implosions on the NIF
- Backlighter development on both OMEGA EP and the NIF will extend the current platform from 1-D to 2-D imaging
- Enhanced single-beam smoothing via 1-D multi-FM smoothing by spectral dispersion (SSD) is expected on the NIF by the end of FY18

E24439a

