Shock-Wave Acceleration of Ions on OMEGA EP

Savannah, GA

Summary

Tailored plasma profiles suitable for shock-wave acceleration (SWA) on OMEGA EP have been produced and characterized

- SWA experiments at the University of California, Los Angeles (UCLA)
 - use a 10- μ m laser in a H₂ gas jet
 - produce 20-MeV protons with narrow energy spreads
 - have a normalized vector potential $a_0 < 2.5$
- Plasma profiles with a sharp rise to a near-critical peak density and a long exponential decay are key to successful SWA
- SWA plasma profiles have been produced on OMEGA EP using the thermal emission from an Au-driven target to irradiate 2- μ m CH foils

Collaborators

D. H. Froula

University of Rochester Laboratory for Laser Energetics

A. Pak, A. Link, and P. K. Patel

Lawrence Livermore National Laboratory

F. Fiuza

SLAC National Accelerator Laboratory

S. Ya. Tochitsky and C. Joshi University of California, Los Angeles

Lasers incident on overcritical plasmas can create conditions for shock-wave generation

A sharp rise to overcritical densities with a longer exponential tail can be created for 10- μ m light with a gas jet

 CO_2 systems are limited in peak power as compared to 1- μ m lasers.

Scaling SWA to the 1- μ m wavelength range requires a tailored high-density profile

ROCHESTER

2-D HYDRA simulations UV absorption in Au (~90%) plasma thermal emission (175 eV)* absorption in 2-µm CH foil (C K-shell) hydrodynamic expansion

* Static pinhole camera array with differential filters used to guide black-body temperature

Optical probing shows clear evidence of an asymmetric expansion of the 2- μ m CH foil target

E24650

ROCHESTER

• Angular filter refractometry (AFR)* measures the refraction of a probe beam passing through a plasma

*D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).

1.25 ns

A comparison between the experimental AFR images and simulated AFR images using the hydrodynamic profiles shows an optimal peak density at around 1 ns

ROCHESTER

E24651

Simulations predict strong scaling of the SWA mechanism with laser intensity

Scaling the SWA mechanism to the 1- μ m OMEGA EP Laser System allows for the production of narrow energy spread ion beams in the 80- to 150-MeV/amu range.

* F. Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012).

Summary/Conclusions

Tailored plasma profiles suitable for shock-wave acceleration (SWA) on OMEGA EP have been produced and characterized

- SWA experiments at the University of California, Los Angeles (UCLA)
 - use a 10- μ m laser in a H₂ gas jet
 - produce 20-MeV protons with narrow energy spreads
 - have a normalized vector potential $a_0 < 2.5$
- Plasma profiles with a sharp rise to a near-critical peak density and a long exponential decay are key to successful SWA
- SWA plasma profiles have been produced on OMEGA EP using the thermal emission from an Au-driven target to irradiate 2- μ m CH foils

10

The plasma density profile strongly affects the spectrum of the accelerated ions

Sheath fields that exist at the sharp plasma-vacuum boundary can smear the energy spread of accelerated ions.

*TNSA: target normal-sheath acceleration

AFR has been used to study the tailored plasma production on OMEGA EP

*D. Haberberger et al., Phys. Plasmas <u>21</u>, 056304 (2014).

A filter placed at the Fourier plane blocks all unrefracted probe light

E22129n

*D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).

In the presence of a plasma, certain angle ranges of the refracted light pass through the filter and form bands in the image plane

*D. Haberberger et al., Phys. Plasmas 21, 056304 (2014).

