A 3-D Model of Hot-Spot Formation in Inertial Confinement Fusions Implosions

X. Gong **University of Rochester** Laboratory for Laser Energetics

- 4.5
- 3.5
- 2.5
- 1.5
- 0.5

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

A 3-D model describing the formation of a hot spot in inertial confinement fusion (ICF) implosions has been developed

- A hot-spot shape is calculated using the results of a sharp-boundary Rayleigh–Taylor (RT) model
- Modification of the hydro profile caused by 3-D effects is calculated using a model developed by Sanz et al.*
- Results of the model will be compared to detailed 3-D simulations in future work

TC12426

J. Sanz and R. Betti, Phys. Plasmas <u>12</u>, 042704 (2005).

Collaborators

V. N. Goncharov and I. V. Igumenshchev

University of Rochester Laboratory for Laser Energetics

ICF implosions evolve through several stages

Early time

Laser drive

Feedout

Plasma formation and imprinting

- LPI**

Rayleigh–Taylor growth, mitigation, and saturation

Shock convergence

Laser drive

Acceleration phase

*CPS: charged-particle spectrometer **LPI: laser–plasma interaction

Three-dimensional simulations and experimental data suggest that long-wavelength nonuniformity growth limits target performance

• ASTER* 3-D simulation, including power imbalance and target offset (at peak neutron-production time)

*I. V. Igumenshchev et al., UO4.00015, this conference.

**S. P. Regan, Cl3.00005, this conference (invited); V. N. Goncharov et al., UO4.00005, this conference.

TC12623

A 3-D hot-spot nonuniformity model has been developed to study hot-spot-formation physics

J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).

model and Sanz model are applied using 1-D hydro profiles from LILAC

A 3-D sharp boundary model was used to determine the perturbation evolution at the inner shell surface

- Takes into account the time variation in the unperturbed state
- Solves the sharp-boundary model in two regions

- The model involves solving a temporal second-order ordinary differential equation
- 1-D hydroprofiles are determined from LILAC simulations

Radial distance

Hydro profiles are extracted using LILAC 1-D simulations

ROCHESTER

The RT model was used to calculate perturbation evolution during shell deceleration

- Perturbation at the beginning of the deceleration comes from the study of acceleration-phase instability*
- Perturbation comes only from laser imprint

*V. N. Goncharov et al., Phys. Plasmas 7, 5118 (2000).

Three-dimensional hot-spot profiles are obtained using the isobaric model of Sanz et al.

• Solve the Poisson equation

$$\nabla^2 \psi = -1, \psi |_{\text{shell}} = 0, \text{ where } \psi \equiv \frac{2\kappa T_{\text{hs}}^n}{5n\overline{\rho}_{\text{hs}}\partial_t \ln m_{\text{hs}}}$$

in 3-D successive-over-relaxation

- The boundary is the solution of sharp-boundary model
- Solve for hot-spot pressure, mass, and temperature

$$P_{\rm hs} V_{\rm hs}^{5/3} = P_0 V_0^{5/3}$$

TC12431

ROCHESTER

$$T_{\rm hs} = \frac{C P_{\rm hs} V_{\rm hs}}{m_{\rm hs}} \left(\frac{\psi}{\psi_{\rm max}}\right)^{1/n}$$

• Neutron yield and average temperature are calculated using 3-D constant = 1.89 hydroprofiles predicted by this model

к	Therm $\kappa = k$
T _{hs}	Hot-s
m _{hs}	Но
V _{hs}	Hot
$ar{ ho}_{\sf hs}$	
P _{hs}	Hot-
С	

J. Sanz and R. Betti, Phys. Plasmas 12, 042704 (2005).

Neutron yield and ion temperature are obtained using derived hydro profiles

3-D, unperturbed

4.793

TC12624

4.123

A 3-D model describing the formation of a hot spot in inertial confinement fusion (ICF) implosions has been developed

- A hot-spot shape is calculated using the results of a sharp-boundary Rayleigh–Taylor (RT) model
- Modification of the hydro profile caused by 3-D effects is calculated using a model developed by Sanz et al.*
- Results of the model will be compared to detailed 3-D simulations in future work

TC12426

J. Sanz and R. Betti, Phys. Plasmas <u>12</u>, 042704 (2005).