Cross-Beam Energy Transfer Mitigation in Cryogenic Implosions on OMEGA

V. N. Goncharov **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

Increased hydrodynamic efficiency by mitigating cross-beam energy transfer (CBET) has been demonstrated in cryogenic implosions on OMEGA

- Target illumination with a focal spot size smaller than the target size $(R_{\rm b}/R_{\rm t} < 1)$ was used to mitigate CBET; the target size varied from $R_t = 400 \ \mu m$ to 500 μm to reduce $R_{\rm b}/R_{\rm t}$
- Current cryogenic implosions on OMEGA have reached $P_{hs} = 56\pm7$ Gbar $(P_{hs}^{lgn} > 120 \text{ Gbar})$; implosions with convergence ratio (CR) < 17 and $\alpha > 3.5$ proceed close to 1-D prediction ($CR^{ign} > 22$)
- Improving target performance with $R_b/R_t < 1$ on OMEGA will require reducing long-wavelength nonuniformity seeded by power imbalance and target offset

TC12309a

Collaborators

S. P. Regan, T. C. Sangster, R. Betti, T. R. Boehly, M. J. Bonino, E. M. Campbell, T. J. B. Collins, R. S. Craxton, A. K. Davis, J. A. Delettrez, D. H. Edgell, R. Epstein, C. J. Forrest, D. H. Froula, V. Yu. Glebov, D. R. Harding, S. X. Hu, I. V. Igumenshchev, R. T. Janezic, J. H. Kelly, T. J. Kessler, T. Z. Kosc, S. J. Loucks, J. A. Marozas, F. J. Marshall, R. L. McCrory, P. W. McKenty, D. T. Michel, J. F. Myatt, P. B. Radha, W. Seka, W. T. Shmayda, A. Shvydky, S. Skupsky, C. Stoeckl, W. Theobald, F. Weilacher, and B. Yaakobi

> University of Rochester Laboratory for Laser Energetics

> > D. D. Meyerhofer

Los Alamos National Laboratory

J. A. Frenje, M. Gatu Johnson, and R. D. Petrasso

Massachussets Institute of Technology, Plasma Science and Fusion Center

S. P. Obenchain and M. Karasik

Naval Research Laboratory

The hot-spot pressure in an ignition design must exceed a threshold value

Direct-drive designs are in a less-challenging hydrodynamic regime with CR \leq 22 and P_{hs} > 120 Gbar; indirect-drive–ignition targets require CR = 30 to 40 and P_{hs} > 350 Gbar.

*R. Betti et al., Phys. Plasmas 17, 058102 (2010).

The cryogenic implosion campaign on OMEGA was designed to demonstrate enhanced laser coupling by mitigating CBET

Shell convergence ratio during laser drive

TC12317a

5

Implosions with $R_b/R_t < 1$ reach a larger hydrodynamic efficiency

Current cryogenic implosions on OMEGA have reached $P_{hs} = 56\pm7$ Gbar

• Target yield and hot-shot pressure degrade (relative to 1-D predictions) with an increase in target diameter and a reduction in $R_{\rm b}/R_{\rm t}^*$

$$m{n}_{\mathsf{T}}\langle \pmb{\sigma} \pmb{v}
angle \, \mathsf{d} \pmb{V}$$

*S. P. Regan et al., Cl3.00005, this conference (invited).

Long-wavelength modes (1 < ℓ < 5) cause a reduction in peak pressure and burn truncation

On-target nonuniformities caused by beam geometry, power imbalance, beam mispointing

> Illumination nonuniformity 3-D solid-sphere projection

ASTER* 3-D simulation of a CR = 20 cryogenic implosion $R_{\rm b}/R_{\rm t}$ = 0.75 (10- μ m offset, 15% power imbalance, 10- μ m rms mispointing)

Peak neutron production in 3-D

Time of peak neutron production in 1-D; bubble burst causes drop in P_{hs} and burn truncation

The nonuniformity spectrum shifts to more-damaging shorter wavelengths for smaller $R_{\rm b}/R_{\rm t}$ (larger $R_{\rm t}$).

*I. V. Igumenshchev et al., "Three-Dimensional Modeling of Direct-Drive Cryogenic Implosions," to be submitted to Physics of Plasmas. I. V. Igumenshchev et al., UO4.00015, this conference.

TC12322a

Three-dimensional simulations predict an early burn truncation because of long-wavelength, hot-spot distortion growth

Measurements show earlier peak burn and burn truncation

Pressure evolves on an ~100-ps time scale; a tens of picoseconds shift in the temporal sampling region makes a significant difference in the inferred pressure.

When the measured burn rate is included in the analysis, inferred P_{hs} and ρR agree with 1-D predictions in implosions with CR < 17 and α > 3.5

Because of a reduced beam overlap, long-wavelength nonuniformity increases with a reduction in $R_{\rm b}/R_{\rm t}$, truncating burn earlier and reducing the observed $P_{\rm hs}$. Reducing beam power imbalance and target offset are required to improve the target performance with $R_{\rm b}/R_{\rm t}$ < 1.

Increased hydrodynamic efficiency by mitigating cross-beam energy transfer (CBET) has been demonstrated in cryogenic implosions on OMEGA

- Target illumination with a focal spot size smaller than the target size $(R_{\rm b}/R_{\rm t} < 1)$ was used to mitigate CBET; the target size varied from $R_t = 400 \ \mu m$ to 500 μm to reduce $R_{\rm b}/R_{\rm t}$
- Current cryogenic implosions on OMEGA have reached $P_{hs} = 56\pm7$ Gbar $(P_{hs}^{lgn} > 120 \text{ Gbar})$; implosions with convergence ratio (CR) < 17 and $\alpha > 3.5$ proceed close to 1-D prediction ($CR^{ign} > 22$)
- Improving target performance with $R_b/R_t < 1$ on OMEGA will require reducing long-wavelength nonuniformity seeded by power imbalance and target offset

TC12309a

