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Summary

Increased hydrodynamic efficiency by mitigating cross-beam energy transfer 
(CBET) has been demonstrated in cryogenic implosions on OMEGA
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• Target illumination with a focal spot size smaller than the target size (Rb /Rt < 1)
 was used to mitigate CBET; the target size varied from Rt = 400 nm to 500 nm
 to reduce Rb /Rt

• Current cryogenic implosions on OMEGA have reached Phs = 56!7 Gbar
 (Phs  > 120 Gbar); implosions with convergence ratio (CR) < 17 and a > 3.5 

proceed close to 1-D prediction (CRign > 22)

• Improving target performance with Rb /Rt < 1 on OMEGA will require reducing
 long-wavelength nonuniformity seeded by power imbalance and target offset
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The hot-spot pressure in an ignition design must exceed a threshold value
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Direct-drive designs are in a less-challenging hydrodynamic regime with CR K 22 and 
Phs > 120 Gbar; indirect-drive–ignition targets require CR = 30 to 40 and Phs > 350 Gbar.
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|no a ~ 0.7

Energy-scaled current OMEGA (Ehs = 0.44 kJ)
Required: 140 Gbar
Achieved: 56!7 Gbar
|no a (energy scaled) ~ 0.7

Mitigated CBET

*R. Betti et al., Phys. Plasmas 17, 058102 (2010).

• Pressure threshold for ignition

• Generalized Lawson criterion*



TC12317a

The cryogenic implosion campaign on OMEGA was designed to demonstrate 
enhanced laser coupling by mitigating CBET
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Implosions with Rb /Rt < 1 reach a larger hydrodynamic efficiency
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Current cryogenic implosions on OMEGA have reached Phs = 56!7 Gbar
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*S. P. Regan et al., CI3.00005, this conference (invited).

• Target yield and hot-shot pressure degrade (relative to 1-D predictions) 
with an increase in target diameter and a reduction in Rb /Rt*

Typical error bar
(!300 eV Ti, !6 to 10 ps Dtburn, !0.2 to 1 nm R17)
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Long-wavelength modes (1 < , < 5) cause a reduction 
in peak pressure and burn truncation
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*I. V. Igumenshchev et al., “Three-Dimensional Modeling of Direct-Drive 
Cryogenic Implosions,” to be submitted to Physics of Plasmas.
I. V. Igumenshchev et al., UO4.00015, this conference.

The nonuniformity spectrum shifts to more-damaging shorter wavelengths for smaller Rb /Rt (larger Rt).

On-target nonuniformities
caused by beam geometry,

power imbalance, beam mispointing

Illumination nonuniformity
3-D solid-sphere projection

ASTER* 3-D simulation of a CR = 20 cryogenic implosion Rb /Rt = 0.75
(10-nm offset, 15% power imbalance, 10-nm rms mispointing)
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Three-dimensional simulations predict an early burn truncation 
because of long-wavelength, hot-spot distortion growth
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Measurements show earlier peak burn and burn truncation
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Pressure evolves on an ~100-ps time scale; a tens of picoseconds shift in the temporal 
sampling region makes a significant difference in the inferred pressure.
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When the measured burn rate is included in the analysis, inferred Phs and tR 
agree with 1-D predictions in implosions with CR < 17 and a > 3.5
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Because of a reduced beam overlap, long-wavelength nonuniformity increases with a reduction 
in Rb /Rt, truncating burn earlier and reducing the observed Phs. Reducing beam power imbalance 
and target offset are required to improve the target performance with Rb /Rt < 1.



Summary/Conclusions
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Increased hydrodynamic efficiency by mitigating cross-beam energy transfer 
(CBET) has been demonstrated in cryogenic implosions on OMEGA

• Target illumination with a focal spot size smaller than the target size (Rb /Rt < 1)
 was used to mitigate CBET; the target size varied from Rt = 400 nm to 500 nm
 to reduce Rb /Rt

• Current cryogenic implosions on OMEGA have reached Phs = 56!7 Gbar
 (Phs  > 120 Gbar); implosions with convergence ratio (CR) < 17 and a > 3.5 

proceed close to 1-D prediction (CRign > 22)

• Improving target performance with Rb /Rt < 1 on OMEGA will require reducing
 long-wavelength nonuniformity seeded by power imbalance and target offset

ign


