Cross-Beam Energy Transfer Mitigation in Cryogenic Implosions on OMEGA

3-D ASTER simulation mass-density map

V. N. Goncharov
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

Increased hydrodynamic efficiency by mitigating cross-beam energy transfer (CBET) has been demonstrated in cryogenic implosions on OMEGA

• Target illumination with a focal spot size smaller than the target size ($R_b/R_t < 1$) was used to mitigate CBET; the target size varied from $R_t = 400\ \mu m$ to $500\ \mu m$ to reduce R_b/R_t

• Current cryogenic implosions on OMEGA have reached $P_{hs} = 56\pm7$ Gbar ($P_{hs}^{ign} > 120$ Gbar); implosions with convergence ratio (CR) < 17 and $\alpha > 3.5$ proceed close to 1-D prediction ($CR_{ign} > 22$)

• Improving target performance with $R_b/R_t < 1$ on OMEGA will require reducing long-wavelength nonuniformity seeded by power imbalance and target offset
Collaborators

University of Rochester
Laboratory for Laser Energetics

D. D. Meyerhofer
Los Alamos National Laboratory

J. A. Frenje, M. Gatu Johnson, and R. D. Petrasso
Massachusetts Institute of Technology, Plasma Science and Fusion Center

S. P. Obenchain and M. Karasik
Naval Research Laboratory
The hot-spot pressure in an ignition design must exceed a threshold value

- Pressure threshold for ignition
 \[P_{th} \sim \frac{1}{\sqrt{E_{hs}}} \]

- Generalized Lawson criterion*
 \[\chi = \frac{P \tau}{P \tau_{\text{ign}}} = \left(\rho R \right)^{0.61} \left(0.24 Y^{16}/M \right)^{0.34} \]
 \[\chi_{\Omega_{\text{NIF}}} \sim E^{0.37} \]

Current high-foot indirect drive
- Required: \(P_{hs} = 350 \text{ to } 400 \text{ Gbar} \)
- Achieved: \(P_{hs} = 230 \text{ Gbar} \)

\(\chi_{\text{no}} \alpha \sim 0.7 \)

Energy-scaled current OMEGA (\(E_{hs} = 0.44 \text{ kJ} \))
- Required: 140 Gbar
- Achieved: 56±7 Gbar

\(\chi_{\text{no}} \alpha \) (energy scaled) \(\sim 0.7 \)

Mitigated CBET

Direct-drive designs are in a less-challenging hydrodynamic regime with CR \(\leq 22 \) and \(P_{hs} > 120 \text{ Gbar} \); indirect-drive–ignition targets require CR = 30 to 40 and \(P_{hs} > 350 \text{ Gbar} \).

The cryogenic implosion campaign on OMEGA was designed to demonstrate enhanced laser coupling by mitigating CBET.
Implosions with $R_b/R_t < 1$ reach a larger hydrodynamic efficiency

Simulations
- $R_b = 380 \, \mu m \quad R_b/R_t = 0.77$: experimental condition
- $R_b = 500 \, \mu m \quad R_b/R_t = 1.00$: test run
Current cryogenic implosions on OMEGA have reached $P_{\text{hs}} = 56 \pm 7$ Gbar

Typical error bar

$(\pm 300 \text{ eV} \ T_i, \pm 6 \text{ to } 10 \text{ ps} \ \Delta t_{\text{burn}}, \pm 0.2 \text{ to } 1 \text{ } \mu\text{m} \ R_{17})$

Yield $= \int_{\Delta t_{\text{burn}}}dt \int_{V_{\text{hs}}} n_D \ n_T \ (\langle \sigma v \rangle) \ dV$

Yield $\sim n_D \ n_T \ T_i^2 \ (\int_{V_{\text{hs}}} \frac{\langle \sigma v \rangle}{T^2} \ dV) \ \Delta t_{\text{burn}}$

Measured yield $\ P_{\text{hs}}^2$

Depends on measured T_i and V_{hs}

Measured burnwidth

- Target yield and hot-shot pressure degrade (relative to 1-D predictions) with an increase in target diameter and a reduction in R_b/R_t^*

* S. P. Regan et al., Cl3.00005, this conference (invited)
Long-wavelength modes \((1 < \ell < 5)\) cause a reduction in peak pressure and burn truncation.

On-target nonuniformities caused by beam geometry, power imbalance, beam mispointing.

Illumination nonuniformity
3-D solid-sphere projection

\textbf{ASTER* 3-D simulation of a CR = 20 cryogenic implosion \(R_b/R_t = 0.75\) (10-\(\mu\)m offset, 15% power imbalance, 10-\(\mu\)m rms mispointing)}

\begin{itemize}
\item Peak neutron production in 3-D
\item Time of peak neutron production in 1-D; bubble burst causes drop in \(P_{hs}\) and burn truncation
\end{itemize}

The nonuniformity spectrum shifts to more-damaging shorter wavelengths for smaller \(R_b/R_t\) (larger \(R_t\)).

I. V. igumenshchev et al., UO4.00015, this conference.
Three-dimensional simulations predict an early burn truncation because of long-wavelength, hot-spot distortion growth.
Measurements show earlier peak burn and burn truncation

Pressure evolves on an \(~100\)-ps time scale; a tens of picoseconds shift in the temporal sampling region makes a significant difference in the inferred pressure.
When the measured burn rate is included in the analysis, inferred P_{hs} and ρR agree with 1-D predictions in implosions with CR < 17 and $\alpha > 3.5$.

Because of a reduced beam overlap, long-wavelength nonuniformity increases with a reduction in R_b/R_t, truncating burn earlier and reducing the observed P_{hs}. Reducing beam power imbalance and target offset are required to improve the target performance with $R_b/R_t < 1$.
Increased hydrodynamic efficiency by mitigating cross-beam energy transfer (CBET) has been demonstrated in cryogenic implosions on OMEGA

- Target illumination with a focal spot size smaller than the target size \(\left(\frac{R_b}{R_t} < 1\right)\) was used to mitigate CBET; the target size varied from \(R_t = 400\ \mu\text{m}\) to \(500\ \mu\text{m}\) to reduce \(\frac{R_b}{R_t}\).

- Current cryogenic implosions on OMEGA have reached \(P_{hs} = 56\pm7\ \text{Gbar}\) \(\left(P_{hs}^{\text{ign}} > 120\ \text{Gbar}\right)\); implosions with convergence ratio \(\left(\text{CR} < 17\right)\) and \(\alpha > 3.5\) proceed close to 1-D prediction \(\left(\text{CR}^{\text{ign}} > 22\right)\).

- Improving target performance with \(\frac{R_b}{R_t} < 1\) on OMEGA will require reducing long-wavelength nonuniformity seeded by power imbalance and target offset.