A New Neutron Time-of-Flight Detector for DT Yield and Ion-Temperature Measurements on OMEGA

Cu activation DT neutron yield ($\times 10^{13}$)

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

V. Yu. Glebov **University of Rochester** Laboratory for Laser Energetics

UR 🔌 LLE

Summary

A new neutron time-of-flight (nTOF) detector for DT yield and T_i measurements was implemented on OMEGA

- The new 15.8-m nTOF detector has a 40×20 -mm BC-422Q scintillator, ND2 filter, and PMT-140 photomultiplier in a lead-shielded housing
- It provides a second line of sight (LOS) for DT yield measurements from 1 \times 10¹² to 2 \times 10¹⁴ and T_i measurements from 2 to 20 keV
- The 15.8-m nTOF detector measures yield with ~1% precision and ion temperature with better then 3% precision
- Large differences in the T_i in different directions suggest bulk fuel flows in cryogenic implosions

E24682

Collaborators

C. J. Forrest, J. P. Knauer, S. P. Regan, T. C. Sangster, and C. Stoeckl University of Rochester Laboratory for Laser Energetics

The design of the 15.8-m nTOF is similar to the 12-m nTOF* with some shielding thickness adjustments

• The front shielding has removable 10-mm-thick lead plates with three plates maximum; one plate is now in use

*V. Yu. Glebov et al., Rev. Sci. Instrum. 75, 3559, (2004).

A new 15.8-m nTOF detector was installed on the west wall above the OMEGA viewing gallery

Electronics in viewing gallery closet

• The 15-m Heliax cable, four-way splitter, and 1-GHz, 10 GS/s Tektronix DPO7104 scope are used with the 15.8-m nTOF detector

The 15.8-m nTOF has the longest distance from target chamber center (TCC) of all the nTOF detectors on OMEGA

*CVD: chemical vapor deposition

The 15.8-m nTOF detector is capable of measuring DT yields from 1×10^{12} to at least 2×10^{14}

To avoid photomultiplier tube (PMT) saturation at high DT yields, an ND2 filter was placed between the scintillator and the PMT, and the PMT was operated at low gain.

The 15.8-m nTOF detector was calibrated against copper activation neutron yields from room-temperature targets

The nTOF detectors on OMEGA measure high DT yield with high precision.

The 15.8-m nTOF and 12-m nTOFN detectors measure ion temperature with better than 3% precision

All data on this slide were recorded during room-temperature target implosions.

The *T_i* ratio in different LOS varies more in cryogenic implosions than in room-temperature targets

The large difference in *T_i* measured from separate LOS in cryogenic implosions suggests bulk fuel flows caused by either perturbation growth or nonuniform drive.

Bulk fuel flows during an implosion may create different *T_i* in different LOS

E23654a

11

A new neutron time-of-flight (nTOF) detector for DT yield and T_i measurements was implemented on OMEGA

- The new 15.8-m nTOF detector has a 40×20 -mm BC-422Q scintillator, ND2 filter, and PMT-140 photomultiplier in a lead-shielded housing
- It provides a second line of sight (LOS) for DT yield measurements from 1 \times 10¹² to 2 \times 10¹⁴ and T_i measurements from 2 to 20 keV
- The 15.8-m nTOF detector measures yield with ~1% precision and ion temperature with better then 3% precision
- Large differences in the T_i in different directions suggest bulk fuel flows in cryogenic implosions

E24682

