A New Neutron Time-of-Flight Detector for DT Yield and Ion-Temperature Measurements on OMEGA

V. Yu. Glebov
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015

Charge (pC)

0 2 4 6 8 10

Cu activation DT neutron yield ($\times 10^{13}$)

15.8-m nTOF
Linear fit
Summary

A new neutron time-of-flight (nTOF) detector for DT yield and T_i measurements was implemented on OMEGA

- The new 15.8-m nTOF detector has a 40 \times 20-mm BC-422Q scintillator, ND2 filter, and PMT-140 photomultiplier in a lead-shielded housing
- It provides a second line of sight (LOS) for DT yield measurements from 1×10^{12} to 2×10^{14} and T_i measurements from 2 to 20 keV
- The 15.8-m nTOF detector measures yield with \sim1% precision and ion temperature with better then 3% precision
- Large differences in the T_i in different directions suggest bulk fuel flows in cryogenic implosions
Collaborators

C. J. Forrest, J. P. Knauer, S. P. Regan, T. C. Sangster, and C. Stoeckl
University of Rochester
Laboratory for Laser Energetics
The design of the 15.8-m nTOF is similar to the 12-m nTOF* with some shielding thickness adjustments.

- The front shielding has removable 10-mm-thick lead plates with three plates maximum; one plate is now in use.

A new 15.8-m nTOF detector was installed on the west wall above the OMEGA viewing gallery.

- The 15-m Heliax cable, four-way splitter, and 1-GHz, 10 GS/s Tektronix DPO7104 scope are used with the 15.8-m nTOF detector.
The 15.8-m nTOF has the longest distance from target chamber center (TCC) of all the nTOF detectors on OMEGA.
The 15.8-m nTOF detector is capable of measuring DT yields from 1×10^{12} to at least 2×10^{14}.

To avoid photomultiplier tube (PMT) saturation at high DT yields, an ND2 filter was placed between the scintillator and the PMT, and the PMT was operated at low gain.
The 15.8-m nTOF detector was calibrated against copper activation neutron yields from room-temperature targets.

The nTOF detectors on OMEGA measure high DT yield with high precision.
The 15.8-m nTOF and 12-m nTOFN detectors measure ion temperature with better than 3% precision.

All data on this slide were recorded during room-temperature target implosions.
The T_i ratio in different LOS varies more in cryogenic implosions than in room-temperature targets.

The large difference in T_i measured from separate LOS in cryogenic implosions suggests bulk fuel flows caused by either perturbation growth or nonuniform drive.
Bulk fuel flows during an implosion may create different T_i in different LOS.
A new neutron time-of-flight (nTOF) detector for DT yield and T_i measurements was implemented on OMEGA

- The new 15.8-m nTOF detector has a 40 × 20-mm BC-422Q scintillator, ND2 filter, and PMT-140 photomultiplier in a lead-shielded housing.
- It provides a second line of sight (LOS) for DT yield measurements from 1×10^{12} to 2×10^{14} and T_i measurements from 2 to 20 keV.
- The 15.8-m nTOF detector measures yield with ~1% precision and ion temperature with better than 3% precision.
- Large differences in the T_i in different directions suggest bulk fuel flows in cryogenic implosions.