Modeling Hot-Electron Measurements in Multibeam Two-Plasmon–Decay Experiments

Fraction of incident laser energy converted into hot electrons

- Overlapped intensity ($\times 10^{14}$ W/cm²)
- Hot-electron temperature

- F_{hot}^{50}
- T_{hot} (keV)

Experiment
Simulation

R. K. Follett
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
15–20 November 2015
Summary

Three-dimensional two-plasmon–decay (TPD) simulations were used to calculate hot-electron production in multibeam planar-target experiments on OMEGA

- Numerical TPD calculations were combined with hydrodynamic simulations to predict hot-electron production
- Simulations show good agreement with the temporally resolved hot-electron measurements and with the scaling of hot-electron production as a function of drive-beam intensity
Collaborators

University of Rochester
Laboratory for Laser Energetics
Hard x-ray detectors were used to measure the hot-electron distribution

Experimental configuration

- **HXRD** (x-ray time history)
- **300 μm (FWHM**)**
- **30 μm CH**
- **30 μm Mo**
- **30 μm CH**
- **HXIP** (absolute x-ray spectrum)
- **3ω (351-nm) drive beams**
 0.4 to 1 kJ in 1 ns ($I_{\text{overlap}} = 3$ to 9×10^{14} W/cm²)

*HXRD: hard x-ray detector
**FWHM: full width at half maximum
†HXIP: hard x-ray image-plate spectrometer
LPSE solves a pair of equations that model the coupling between the envelope of high-frequency-electrostatic perturbations and low-frequency-density perturbations*.

Electron plasma wave propagation in an inhomogeneous plasma

\[\nabla \cdot \left[2i\omega_{pe} (\partial_t + \nu_e) + 3v_{te}^2 \nabla^2 - \frac{\omega_{pe}^2 \delta N}{n_0} \right] \vec{E} = \frac{\omega_{pe}^2}{n_0} \nabla \cdot \left(\frac{\delta n}{n_0} \vec{E} \right) + \frac{e}{4m_e} \nabla \cdot \left[\nabla (\vec{E}_0 \cdot \vec{E}^*) - \vec{E}_0 \nabla \cdot \vec{E}^* \right] + S_E \]

Hybrid-particle evolution

Coupling to ions

Coupling to drive beams

\[\left[\partial_t^2 + 2\nu_i \nabla_t - c_s^2 \nabla^2 \right] \delta n = \frac{\nabla^2 |\vec{E} + \vec{E}_0|^2}{16\pi m_i} \]

ion-acoustic wave propagation

Ponderomotive force

\[\nabla^2 \left(\vec{E} + \vec{E}_0 \right) \]

LPSE geometry

Thermal fluctuations

Polarization vectors

Drive-beam wave vectors

\[\text{*J. F. Myatt, NO5.00002, this conference.} \]
Two-dimensional hydrodynamic simulations were used to calculate the input parameters for the LPSE simulations.
To make a direct comparison between hot-electron measurements and simulations, it is necessary to account for spatial and temporal variations present in the experiment.
Predicted hot-electron fractions were generated using plasma conditions from \textit{DRACO} simulations.

Plasma parameters at $n_c/4$ (from \textit{DRACO} simulations):

- I_{14} at $n_c/4$ ($\times 10^{14}$ W/cm2)
- L_n at $n_c/4$ (μm)
- T_e at $n_c/4$ (keV)

Spatially and temporally varying F_{hot} prediction.
The predicted spatially averaged hot-electron production is in good agreement with time-resolved HXRD measurements.

\[
\left\langle F_{\text{hot}} \right\rangle_r = \frac{\int F_{\text{hot}}(r,t)I(r,t)rdr}{\int I(r,t)rdr}
\]

Measured and predicted hot-electron–production time histories

- Pulse
- TS*: Thomson scattering
- HXRD
- LPSE

*TS: Thomson scattering
LPSE reproduces the observed scaling in hot-electron temperature and fraction

\[
\langle F_{\text{hot}} \rangle = \frac{\int dt \int F_{\text{hot}}^{LPSE}(r, t) I(r, t) r dr}{\int dt \int I(r, t) r dr}
\]

Fraction of incident laser energy converted into hot electrons

Hot-electron temperature

Overlapped intensity (×10^{14} W/cm^2)

Overlapped intensity (×10^{14} W/cm^2)
Three-dimensional two-plasmon–decay (TPD) simulations were used to calculate hot-electron production in multibeam planar-target experiments on OMEGA

- Numerical TPD calculations were combined with hydrodynamic simulations to predict hot-electron production
- Simulations show good agreement with the temporally resolved hot-electron measurements and with the scaling of hot-electron production as a function of drive-beam intensity