Modeling Hot-Electron Measurements in Multibeam Two-Plasmon–Decay Experiments

R. K. Follett **University of Rochester** Laboratory for Laser Energetics

ROCHESTER

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 15-20 November 2015

Summarv

Three-dimensional two-plasmon–decay (TPD) simulations were used to calculate hot-electron production in multibeam planar-target experiments on OMEGA

- Numerical TPD calculations were combined with hydrodynamic simulations to predict hot-electron production
- Simulations show good agreement with the temporally resolved hot-electron measurements and with the scaling of hot-electron production as a function of drive-beam intensity

Collaborators

J. A. Delettrez, D. H. Edgell, D. H. Froula, R. J. Henchen, S. X. Hu, J. Katz, D. T. Michel, J. F. Myatt, J. Shaw, A. A. Solodov, C. Stoeckl, and B. Yaakobi

> University of Rochester Laboratory for Laser Energetics

Hard x-ray detectors were used to measure the hot-electron distribution

 3ω (351-nm) drive beams 0.4 to 1 kJ in 1 ns ($I_{\text{overlap}} = 3 \text{ to } 9 \times 10^{14} \text{ W/cm}^2$)

> *HXRD: hard x-ray detector ** FWHM: full width at half maximum [†]HXIP: hard x-ray image-plate spectrometer

E24267a

LPSE solves a pair of equations that model the coupling between the envelope of high-frequency-electrostatic perturbations and low-frequency-density perturbations*

CHESTER

E24154a

Thermal fluctuations

* J. F. Myatt, NO5.00002, this conference.

Two-dimensional hydrodynamic simulations were used to calculate the input parameters for the LPSE simulations

To make a direct comparison between hot-electron measurements and simulations, it is necessary to account for spatial and temporal variations present in the experiment

ROCHESTER

E24269a

Predicted hot-electron fractions were generated using plasma conditions from *DRACO* simulations

The predicted spatially averaged hot-electron production is in good agreement with time-resolved HXRD measurements

ROCHESTER

E24641

*TS: Thomson scattering

LPSE reproduces the observed scaling in hot-electron temperature and fraction

E24158a

Three-dimensional two-plasmon–decay (TPD) simulations were used to calculate hot-electron production in multibeam planar-target experiments on OMEGA

- Numerical TPD calculations were combined with hydrodynamic simulations to predict hot-electron production
- Simulations show good agreement with the temporally resolved hot-electron measurements and with the scaling of hot-electron production as a function of drive-beam intensity

