Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

D. H. Edgell **University of Rochester** Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

The unabsorbed light from individual beamlets is a powerful tool to diagnose cross-beam energy transfer (CBET)

- Images of 351-nm light from OMEGA implosions show a unique and distinct "spot" corresponding to each drive beam
- Each spot is a record of the unabsorbed light from a single "beamlet" originating from a particular location (impact parameter, polar angle) in the beam profile
- This can be used to diagnose how CBET affects different parts of the beam profile and provide benchmarking for hydrodynamics codes
- A strong variation in the intensity of each spot because of the effect of beam polarization on CBET has been observed

E24104a

Collaborators

R. K. Follett, V. N. Goncharov, I. V. Igumenshchev, J. Katz, J. F. Myatt, W. Seka, and D. H. Froula

> University of Rochester Laboratory for Laser Energetics

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

• Light reaches a scattered-light detector originating from each beam

E24108a

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle

E24109a

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"

E24236a

A 351-nm camera records the unabsorbed light of a beamlet from each OMEGA beam

- Light reaches a scattered-light detector originating from each beam
- Recorded light originates from a determinable point in a beam profile
 - impact parameter
 - polar angle
- This light can be considered as sampled from a small component of the incident beam
 - a "beamlet"
- Unabsorbed light from this beam appears as a spot in the image plane

E24237a

Simulated images

Simulated images

E24261a

Simulated images

E24262a

The beamlet spots can be used to diagnose the variation in CBET over a beam profile

Three-dimensional CBET modeling predicts that turning off one beam can reduce the intensity of some other spots by over 15%

A strong variation in the intensity of each spot caused by the effect of beam polarization on CBET has been observed

- CBET is strongly affected by the relative polarization of crossing beams*
- Without distributed polarization rotators (DPR's) each beam has a different specific polarization
- This destroys the symmetry of the beamlet intensities when **CBET** is strong as each crosses different beam polarizations

Without polarization smoothing

With polarization smoothing

*P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).

Early time little CBET

Late time strong CBET

The effect of polarization should be included in CBET modeling

- When a polarized beamlet undergoes CBET with a beamlet of a different polarization, the polarization of both beamlets will be altered*
 - only the shared component of polarization gains/loses energy
- As a result the polarization and intensity of a single beam will vary asymmetrically over its beam profile
- Even with polarization smoothing, some asymmetric variations are expected since polarization will be altered when CBET occurs

This source of implosion nonuniformity must be studied to determine its impact.

*D. Turnbull et al., Rev. Sci. Instrum. 85, 11E603 (2014).

Summary/Conclusions

The unabsorbed light from individual beamlets is a powerful tool to diagnose implosions

- Images of 351-nm light from OMEGA implosions show a unique and distinct "spot" corresponding to each drive beam
- Each spot is a record of the unabsorbed light from a single "beamlet" originating from a particular location (impact parameter, polar angle) in the beam profile
- This can be used to diagnose how CBET affects different parts of the beam profile and provide benchmarking for hydrodynamics codes
- A strong variation in the intensity of each spot because of the effect of beam polarization on CBET has been observed

E24104a

