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Summary

Simultaneous measurements of the 2-D mass ablation rate and ablation-front 
trajectory in polar-direct-drive (PDD) implosions allow the effects of cross-beam 
energy transfer (CBET) on hydrodynamic efficiency to be isolated and evaluated

• The PDD configuration limits CBET growth to the target equator, providing 
high- and low-CBET conditions in the same implosion

• Two-dimensional hydrodynamic simulations without a CBET model reproduced 
measured ablation rates and ablation-front trajectories at the pole, showing 
that coupling physics is well-modeled when CBET effects are negligible

• Running simulations with a ray-based CBET model improved agreement
 at the equator
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Enhanced CBET growth beyond what is calculated with the current 
model is required to reproduce measurements made at the equator.
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In direct-drive inertial confinement fusion experiments, the hydrodynamic 
coupling is governed by laser absorption and electron thermal transport
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Simultaneous measurements of the mass ablation rate and shell velocity 
constrain the hydrodynamic coupling.
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Laser absorption is significantly reduced by CBET
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Simulations indicate that CBET reduces the ablation 
pressure by up to 40% in symmetric-direct-drive 
implosions on OMEGA.*

*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014).
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CBET can be studied by dropping beams at the equator

6

In PDD, CBET is isolated 
to the equator.
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Angularly resolved measurements of the hydrodynamic coupling 
in PDD allow the effects of CBET physics to be isolated

7

CBET primarily affects the ablation pressure at the equator.
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The Si mass ablation rate and ablation-front trajectory were measured 
by imaging the soft x rays emitted by imploding Si-coated CH targets
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*D. T. Michel et al., Rev. Sci. Instrum. 83, 10E530 (2012).
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The Si/CH interface and ablation-front trajectories were obtained by tracking 
their positions in a series of images taken throughout the implosion*
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*A. K. Davis et al., Rev. Sci. Instrum. 85, 11D616 (2014).
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In PDD, the mass ablation rate and shell velocity 
are lower at the equator than at the pole

10

The implosion was designed to be round 
without CBET, so differences in hydrodynamic 
coupling result from CBET.
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DRACO* 2-D hydrodynamic simulations without a CBET model reproduce the 
drive at the pole, validating the nonlocal electron thermal-transport model**
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*P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).
**D. Cao et al., Phys. Plasmas 22, 082308 (2015).
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A 3-D ray-tracing model for CBET* has been implemented in DRACO
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*J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption 
Conference, Estes Park, CO, 8–13 June 2014.

**C. J. Randall, J. R. Albritton, and J. J. Thomson, Phys. Fluids 24, 1474 (1981).

Direct-drive CBET:**
• No ion-wave saturation (small dn/n)

• Linear plasma response
• Many interactions
• Complex geometry

,

DRACO CBET model:
• Relatively computationally inexpensive
• 3-D ray tracing
• Local plane-wave approximation
 for CBET coupling
• Ray energies decomposed onto 

hydrodynamics grid to calculate 
intensities
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The simulations run with the CBET model showed better agreement 
with measurements at the equator
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Simulations reproduce measurements at the pole and equator 
when an intensity factor is introduced into the CBET model

14

0.5 1.0 1.5

Data
2-D DRACO:

CBET
CBET (fI = 1.6)

t = 0.83 ns

60
0 
n

m

Pole

Equator

Ablation
front

Si/CH interface

100

150

200

250

300
100

150

200

250

300

Time (ns)

R
ad

iu
s 

(n
m

)
R

ad
iu

s 
(n

m
)

Equator

Difference
caused by fI

Si/CH
interface

Pole

Ablation
front

Target
stalk



E23321a

The CBET enhancement could be caused by speckle and edge-focusing 
effects that are not modeled in the ray-based calculation
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*SBS enhancement caused by high-intensity speckles was observed for single-beam interactions; V. T. Tikhonchuk et al., Phys. of Plasmas 8, 1636 (2001).
**J. F. Myatt et al., presented at the 45th Annual Anomalous Absorption Conference, Ventura, CA, 14–19 June 2015.

***D. H. Edgell et al., JO5.00004, this conference.

These effects are being investigated with a wave-based model.**
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A similar intensity factor was determined for three different laser intensities
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The time-resolved mass ablation rate was investigated 
by using three thicknesses of the outer Si layer
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These experiments were performed at the National Ignition Facility (NIF) to test 
scale-length dependence of the 2-D CBET model and intensity factor
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Ablation-front trajectories show good agreement with corresponding pre-shot 
simulations that used an intensity factor of 1.4
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No fundamental changes were required in the modeling of CBET between OMEGA and the NIF.
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Summary/Conclusions
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Enhanced CBET growth beyond what is calculated with the current 
model is required to reproduce measurements made at the equator.

Simultaneous measurements of the 2-D mass ablation rate and ablation-front 
trajectory in polar-direct-drive (PDD) implosions allow the effects of cross-beam 
energy transfer (CBET) on hydrodynamic efficiency to be isolated and evaluated

• The PDD configuration limits CBET growth to the target equator, providing 
high- and low-CBET conditions in the same implosion

• Two-dimensional hydrodynamic simulations without a CBET model reproduced 
measured ablation rates and ablation-front trajectories at the pole, showing 
that coupling physics is well-modeled when CBET effects are negligible

• Running simulations with a ray-based CBET model improved agreement
 at the equator
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DRACO simulations of cryogenic implosions show that perturbations 
have a minimal impact on the measurement of the burnthrough time*

21

*DRACO simulations were performed with and without perturbations seeded
by target offset, DT ice roughness, and laser imprint up to mode 150.
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