First Results from Laser-Driven MagLIF Experiments on OMEGA: **Backscatter and Transmission Measurements of Laser Preheating**

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

J. R. Davies **University of Rochester** Laboratory for Laser Energetics

Summary

Laser preheating has been studied as the first phase in the development of laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA

- Transmission through entrance window foils along the original beam path exceeded 50%
- Backscatter from foil-only and cylinders was similar, lasted ~0.5 ns, and accounted for less than 1% of the laser energy
- Less than 10% of the laser energy was sidescattered as the foils started to transmit
- Hydrocode modeling is in reasonable agreement with experiment

TC12448

2

Collaborators

D. H. Barnak, R. Betti, E. M. Campbell, P.-Y. Chang, and W. Seka University of Rochester Laboratory for Laser Energetics

G. Fiksel

University of Wisconsin–Madison

K. J. Peterson, A. B. Sefkow, D. B. Sinars, and S. A. Slutz

Sandia National Laboratories

This project is funded by the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E)

A point design for laser-driven MagLIF on OMEGA has been developed and will be tested in a series of experiments

TC12449

*MIFEDS: magneto-inertial fusion electrical discharge system

The first experiments studied preheat using entrance window foils and complete targets with and without magnetic field

Target fill: 10-atm D₂ doped $2\%_{at}$ Ne (1.6 mg/cm³) Energy on target 60 to 200 J Laser: 2.5-ns square temporal profile 218- μ m FWHM* Gaussian radial profile Peak intensity 0.44 to $1.5 \times 10^{14} \text{ W/cm}^2$

Window

*FWHM: full-width at half-maximum

Time-resolved spectra of scattered light were measured at 0°, 16.6°, and 24.8° to the laser axis; foil transmission was measured with a calorimeter

*FABS: full-aperture backscatter station

Foil transmission along the original beam path exceeded 50% and increased with laser energy

ROCHESTER

Backscatter from foils and cylinders was similar at all angles and laser energies, with and without a magnetic field, lasting ~0.5 ns

Time-resolved spectra through the laser beam port 25 (log scale) Cylinder 203.3 J Foil 195.6 J 351.8 Wavelength (nm) 351.6 351.4 351.2 351.0 350.8 0.5 1.5 2.5 0.0 0.5 1.0 2.0 1.0 1.5 0.0 Time (ns) Time (ns) There was no backscatter from the gas. TC12453

KOCHESTER

2.0

2.5

Laser light was backscattered outside the original beam path

Foil-transmission measurements showed sidescattering lasting less than 0.5 ns

Total backscatter and total transmission for foils at 200 J were obtained by fitting backscatter and transmission measurements from two separate shots

ROCHESTER

The hydrocode DRACO reproduces foil breakthrough time and sidescatter but overestimates absorption by the foil at 36.4%

DRACO predicts up to 200-eV mean preheat temperature in the volume to be compressed before the window plasma enters

TC12458a

Summary/Conclusions

Laser preheating has been studied as the first phase in the development of laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA

- Transmission through entrance window foils along the original beam path exceeded 50%
- Backscatter from foil-only and cylinders was similar, lasted ~0.5 ns, and accounted for less than 1% of the laser energy
- Less than 10% of the laser energy was sidescattered as the foils started to transmit
- Hydrocode modeling is in reasonable agreement with experiment

TC12448

14

Six shots were taken on just the entrance window foils

Shot number	<i>E</i> (J)	Diagnostic
76671	212.6	FABS backscatter, Hex Cal transmiss
76676	195.6	FABS backscatter, Hex Cal transmiss
76677	108.1	FABS backscatter, Hex Cal transmiss
76679	198.4	FABS transmission, Dante
76680	113.8	FABS transmission, Dante
76681	63.1	FABS transmission, Dante

Twelve shots were taken on gas-filled cylinders

Shot number	E (J)	P (atm)	Ne	B (T)	Front diagnostic	Sic
76673	203.3	10.0	Y	15	FABS, Dante	
76674	202.0	10.0	Y	15	FABS, Dante	
76675	198.9	10.0	Y	0	FABS, Dante	SOF
76678	191.6	10.0	Y	0	FABS, Dante	
76682	209.3	5.0	Y	0	FABS, Dante	
76683	201.7	7.5	Y	0	FABS, Dante	
76966	228.6	10.0	Y	0	SXR**	SXR, S
76967	200.8	10.0	Y	0	SXR	SXR, S
76968	202.4	10.0	Y	0	SXR	SXR, S
76969	196.4	10.0	N	0	SXR	SXR, S
76970	198.8	10.0	Y	0	SXR	SXR, S
76971	198.7	10.0	Ν	0	SXR	SXR, S

*SOP: streaked optical pyrometry

**SXR: soft x ray

[†]VISAR: velocity interferometer system for any reflector

