A Tunable (1100-nm to 1500-nm) 50-mJ Laser Enables a Pump-Depleting Plasma-Wave Amplifier

A. Davies University of Rochester Laboratory for Laser Energetics

RÖCHESTER

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16–20 November 2015

Summary

A high-energy, tunable Raman amplification experiment is designed to quickly enter the pump-depletion stage

- Raman amplification has the potential to surpass current laser power limitations
- Two independent laser systems will provide the pump (50 J) and seed (50 mJ)
- The pump-depletion stage coincides with the presence of large-amplitude electron plasma waves that will be detected with Thomson scattering

Collaborators

S. Bucht, J. Katz, D. Haberberger, J. Bromage, J. D. Zuegel, and D. H. Froula

University of Rochester Laboratory for Laser Energetics

P. A. Norreys

Central Laser Facility, Appleton Laboratory

R. Bingham

University of Strathclyde

J. Sadler

University of Oxford, Clarendon Laboratory

R.Trines

Rutherford Appleton Laboratory

L. O. Silva

Instituto Superior Tecnico

The next generation of high-intensity lasers requires a paradigm shift in technology

- Present-day petawatt-class lasers are limited by the grating damage threshold
 - broadband gratings: fluence limit ~0.1 J/cm²
- Plasma amplifiers have the potential to reach higher peak powers by avoiding the damagethreshold obstacle
 - plasma fluence limit: ~1000 J/cm² (assuming a 10-fs pulse)

E24634

RPA: Raman plasma amplifier

A plasma amplifier works by transferring energy from a long (tens of ps) energetic pump pulse into a short (tens of fs) counter-propagating seed pulse

$$\vec{k}_{pump} = \vec{k}_{seed} + \vec{k}_{p}$$
 $\omega_{pump} = \omega_{seed} + \omega_{p}$

This localized backscattering can effectively compress the high-energy pump into a high-intensity short pulse.

Raman amplification at the Laboratory of Laser Energetics will utilize existing laser systems to provide the pump and seed

E23502a

The seed and pump will cross out of focus at a small angle in a 4-mm-long hydrogen gas cell

Unique conditions

– long homogeneous plasma density

- isolate scattering sources

- practical energies for PW

- quickly enter pumpdepletion stage

To create a long homogenous plasma target, a gas cell target has been constructed and characterized using interferometry

*rms: root mean square

Particle-in-cell simulations predict 40% pump depletion and a nonlinear electron plasma wave (EPW)

Thomson scattering will spatially and temporally resolve the driven EPW's frequency and amplitude

10

A high-energy, tunable Raman amplification experiment is designed to quickly enter the pump-depletion stage

- Raman amplification has the potential to surpass current laser power limitations
- Two independent laser systems will provide the pump (50 J) and seed (50 mJ)
- The pump-depletion stage coincides with the presence of large-amplitude electron plasma waves that will be detected with Thomson scattering

