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Summary

A polar-direct-drive (PDD) design achieves high gain in the presence 
of cross-beam energy transfer (CBET)

• Wavelength detuning schemes were developed, which mitigate some
 of the loss of drive caused by CBET

• A PDD ignition design using the balanced-tricolor detuning configuration 
achieves a gain of 41 with an in-flight aspect ratio (IFAR) of 23

 and an implosion velocity of 400 nm/ns

• A robust alpha-burning design using the tricolor detuning configuration
 has been developed that generates 1017 neutrons with an IFAR of 21
 and an implosion velocity of 396 nm/ns
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CBET reduces the laser drive by as much as 30%
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*D. H. Froula et al., Phys. Plasmas 20, 082704 (2013).
**J. A. Marozas et al., presented at the 44th Annual Anomalous Absorption Conference,

Estes Park, CO, 8–13 June 2014
***See also Marozas, JO5.00005; McKenty, JO5.00008, this conference

• The CBET effect increases scattered light 
through the stimulated Brillouin scattering 
(SBS) of outgoing rays, removing energy 
from incoming, high-energy rays

• The energy exchange can be reduced by 
modifying the spot to reduce the wings of 
the laser spot (zooming,* spot masking**)

• CBET can also be mitigated by “detuning” 
the wavelengths of the interacting beams***

• Laser wavelength detuning is used 
for power balance in indirect-drive 
experiments; for direct drive it is used

 for CBET mitigation
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Successful wavelength detuning shifts the resonance
location sufficiently to mitigate CBET
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• The magnitude of Dm determines the mitigation duration

– the larger the Dm, the greater the time before the resonance 
region enters the deposition region

– north–south asymmetries exist for sufficiently small Dm

– detuning may be used for both spherical drive and PDD

Parabolic locus 
of turning points

When probe rays are red-shifted, 
the resonance shifts to a lower Mach 
number, where probe rays are blocked 
and/or have negligible intensity

When probe rays are blue-shifted, the 
resonance shifts to a higher Mach 
number, where intersecting probe rays 
are negligible
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A PDD ignition design incorporating nonlocal heat transport 
is the basis of the CBET ignition designs
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• Nonlocal heat transport is modeled with the implicit 
Schurtz–Nicolai–Busquet (iSNB) model*

• Increased hydrodynamic efficiency leads
 to high gain (53), Vimp (414 km/s), and IFAR (35),
 all of which are brought back to levels characteristic 

of previous designs when CBET is included

• The beam-pointing angles, ring energies,
 and spot shapes were also the basis for the 

intermediate spot-shape design of D. Cao,**
 and will be used in the 700-kJ PDD experiments***
 at the National Ignition Facility (NIF)

*D. Cao et al., Bull. Am. Phys. Soc. 58, 310 (2013).
**D. Cao et al., BO4.00014, this conference.

***P. B. Radha et al., CI3.00004, this conference (invited).
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An alpha-burning design was developed based on the detuning configuration 
with the greatest absorption
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• The tricolor configuration has an absorption 
fraction of 72%, compared to 62% without detuning

• The target was modified by
– increasing the equatorial ring energy
– repointing all beams further toward
 the equator (~2°)

– reducing the shell thickness and radius by 7%

• A triple-picket pulse is used for enhanced
 adiabat shaping
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The PDD alpha-burning design was developed 
with a clean yield of 1017 neutrons

• This design uses the “tricolor” detuning configuration which uses a hemispherical wavelength shift 
but with Dm = 0 for the polar rings to reduce intrahemispherical CBET

• The tricolor configuration restores over half of the laser energy scattered by CBET interactions

• The odd perturbation modes must be compensated by modified ring energies and pointing angles

• The alpha-burning design uses a mass-weighted, end-of-pulse adiabat of 4.6, leading to a low IFAR 
of 21 for target stability

8

*RGB: red-green-blue

Region
of greatest

overlap

Repointed
beam

locations

da9f.6

Alpha-burning design

0

9.395 ns

0

50

100

150

–100

–50

–100

100

y (nm)

z 
(n

m
)

Ti (keV)

1
3
5
7
9

t (g/cm3)

10
50
90
130

Vimp = 396 nm/nsVimp = 396 nm/ns

E = 1.8 MJE = 1.8 MJ

0 Å6 Å
On-target color projectionNIF beam ports

–6 Å



TC12261a

The predicted ion temperatures achieved are sufficient 
to demonstrate “bootstrap” heating

9

• The areal density and peak ion temperature, while insufficient to produce 
a sustained burn wave, generate an alpha-deposition neutron yield 
greater than the neutron yield generated by compression alone

• Y/Yno a = 4.5; the yield caused by bootstrap heating is over three times 
the compression yield
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The balanced-tricolor detuning configuration produces 
a gain of 41 and a more-uniform hot spot

• The coupling is only 3% less than the tricolor configuration, and is still high 
enough to produce a high implosion velocity

• This configuration addresses the north to south asymmetry of the tricolor 
configuration while retaining three wavelengths for intrahemispherical detuning

• The greater uniformity increases the clean volume and target margin

• The minimum end-of-pulse adiabat is 2.8, giving an IFAR of 23
 and good target stability
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The ignition margin for the balanced design is being increased 
by means of other mitigation schemes
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• Wavelength detuning is completely compatible with spot-shape modifications 
like aperturing to remove the low-energy edge rays of each beam

• The average equatorial power divided by the quarter-critical spherical
 surface area is ~1.2 × 1015 W/cm2

• Both reduction in the spot size to 0.95 × R0 and an equatorial shim are being
 used to increase margin and reduce the equatorial power

• Alternate ablators will be explored for use in reduction of two-plasmon decay

This PDD design is the basis for a spherical-direct-drive 
ignition design using wavelength detuning.



Summary/Conclusions
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A polar-direct-drive (PDD) design achieves high gain in the presence 
of cross-beam energy transfer (CBET)

• Wavelength detuning schemes were developed, which mitigate some
 of the loss of drive caused by CBET

• A PDD ignition design using the balanced-tricolor detuning configuration 
achieves a gain of 41 with an in-flight aspect ratio (IFAR) of 23

 and an implosion velocity of 400 nm/ns

• A robust alpha-burning design using the tricolor detuning configuration
 has been developed that generates 1017 neutrons with an IFAR of 21
 and an implosion velocity of 396 nm/ns



TC12254a

Several wavelength detuning configurations were assessed 
for coupling efficiency and symmetry
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• Tricolor detuning provides the greatest absorption

• Balanced-tricolor detuning has a lower absorption than the tricolor configuration 
because of interactions in the azimuthal direction, but is close to tricolor
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The alpha-burner implosion velocity can be reduced with corresponding 
reduction in the neutron yield
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• The implosion velocity was reduced by lowering the peak drive power

• The alpha-burning design is also relatively insensitive to ice roughness 
perturbations, since it has no “ignition cliff”

• A high-yield, lower-implosion-velocity design will be investigated by lowering 
the adiabat but increasing the coupling, using spot masking in addition

 to wavelength detuning and using the balanced tricolor configuration
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The desired Dm0 of !6 Å UV seems achievable on the NIF with modifications 
to the reflection absorption baffles
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• The regen and main amplifiers on the NIF are predicted to support 
the desired !6-Å UV detuning*

• Shiny metal clips supporting the Armor glass (baffles) currently prevent increasing 
the detuning range caused by the potential retroreflections

• Some beams may require new conversion crystals
• LLE and LLNL are working together to address meeting the goal of !6-Å UV detuning

*S. Yang et al., teleconference presented at Lawrence Livermore National 
Laboratory, Livermore, CA (11 March 2014).
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The instantaneous scattered-light pattern indicates the differences 
between the detuning configurations
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• Banded and tricolor detuning have less scattered light at the equator because 
of reduced intrahemispherical CBET and less scattering of the polar beams 

• Tricolor detuning has less scattered light at the poles than banded because of 
reduced interhemispherical CBET and less scattering of the equatorial beams
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The laser beams in PDD are repointed toward the equator 
to increase implosion uniformity
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• The laser beams in PDD are repointed toward the equator to increase implosion uniformity

• Repointing beams leads to greater ray-path lengths, at a greater distance from the target, 
through lower densities (n = nc × cos2iinc)

• The equatorial beam energy is increased to offset the reduced laser coupling
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