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Summary

The onset of the burning-plasma regime can be identified through experimental 
observables related to the yield amplification from a heating

• The fundamental parameter characterizing burning plasmas is heating workPdVQ a=a

• Current high-foot (HF)* implosions at the National Ignition Facility (NIF) have achieved 
. .toQ 0 5 0 6hs .a  with a yield amplification, caused by a heating, of about 2.3# at 1.9-MJ laser energy

• For a high-foot-like* target, the onset of the burning-plasma regime in the hot spot Q 1hs =a^ h 
requires ~50 kJ of fusion energy

• Hydro-equivalent** extrapolations of direct-drive OMEGA implosions to 1.9-MJ symmetric 
illumination indicate performance similar to indirect drive with a yield amplification of about 2#  
and over 100 kJ of fusion energy
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*O. A. Hurricane et al., Nature 506, 343 (2014).
**R. Nora et al., Phys. Plasmas 21, 056316 (2014).
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Outline

• Defining burning plasmas and a heating

• Inferring burning plasma regimes in inertial confinement fusion (ICF)

• a heating in indirect drive on the NIF

• Extrapolation of OMEGA implosions to symmetric direct drive on the NIF  
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Definition of Burning Plasmas

In a burning plasma, a heating is the dominant power 
input to the fusion plasma
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The yield amplification caused by a heating 
depends exclusively on Qa
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Yield amplification is a unique function of Qa
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If the yield amplification Yamp is known, Qa is determined 
from the Yamp–Qa plot

7

0
0

2

4

6

8

10

1 2 3 4

Qa

Steady-state burning plasmas

Burning plasma
Y

Y
n

o
a

a
o
o

Q1 /4 3+ a^ h



TC12592

The definition of Qa is modified to capture the transient 
character of ICF implosions
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• dVP hs = input energy delivered to the hot spot caused by compression
• Ex = ICF energy confinement time 
• E =a  total a energy produced
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Only the a energy deposition during hot-spot compression 
should be included when determining Qa
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In ICF the input energy is distributed between the hot spot and the shell
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Two burning-plasma regimes are identified:
 a heating exceeds PdV work to the hot spot
 a heating exceeds PdV to hot spot + shell
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In simulations the PdV work is calculated by considering a fixed mass 
enclosed by the hot-spot volume at peak neutron production

• Hot-spot mass defined at peak 
neutron-production time 
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• Hot-spot mass traced back in time 
before peak neutron production
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The PdV work delivered to the hot spot can be exactly calculated in 1-D
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In experiments and multidimensional simulations, the bang-time 
PdV work can be estimated from the hot-spot energy balance
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Experimental observables are used to infer hot-spot energy, a energy, 
and radiation losses
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Hot-spot energy from burnwidth, neutron yield, Ti, and self-emission
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The bang-time PdV is less than the stagnation PdV because of the rapid 
expansion of the hot spot at large-yield amplifications
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The yield amplification from simulations (30-kJ to 2-MJ energy) using both 
ways of calculating PdV is strongly correlated with Qa
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The physics of the hot-spot formation and shell deceleration 
depends on three dimensionless parameters
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The second burning-plasma regime requires calculating the total PdV 
to the hot spot and shell
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The yield amplification from simulations (30-kJ to 2-MJ energy) 
is strongly correlated with Qtot

a
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The yield amplification is mostly a function of the measurable 
Lawson parameter |a
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J. Lindl et al., Phys. Plasmas 21, 129902(E) (2014).
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In the indirect-drive high-foot shot 140120, a heating caused
a yield amplification of about 2.3#
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a Heating in Indirect- and Direct-Drive ICF
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Hydrodynamic equivalence provides a tool to scale the performance 
of OMEGA direct-drive implosions to NIF energies for symmetric illumination
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Three-dimensional theory by R. Nora et al., Phys. Plasmas 21, 056316 (2014).

Hydrodynamic scaling does not account for differences 
in laser–plasma interactions between OMEGA and the NIF.

Hydrodynamic scaling 
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The hydrodynamic scaling leads to equal pressures at stagnation

• In-flight scaling:  constVimp +   const+a   *RT growth factors const+

    R E /
L
1 3+   P E /

LL
2 3+   E /

Lpulse
1 3+x

• Stagnation scaling:  constP +   T R .0 2+   V Rhs
3+

  Rburn +x   R Rtot +t
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From 26 kJ to 1.9 MJ " P is the same; R, xburn, tR are up 4#, and T is up 30%.

In the absence of a heating:

*RT = Rayleigh–Taylor
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The best-performing OMEGA implosion is readily scaled up to NIF energies
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A multimode ice perturbation is used to degrade the target performance 
to reproduce the OMEGA experiment; the same perturbation is applied 
to the 1.9-MJ target
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A. Bose et al., GO5.00004, this conference;
K. M. Woo et al., GO5.00003, this conference.
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OMEGA shot 77068 scaled up to 1.9 MJ achieves 
a yield enhancement of á2× and Qa á 0.4
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Access to the burning-plasma regime requires about 50 kJ of HF targets 
in indirect drive and about 200 kJ of fusion energy for direct drive 
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Both direct and indirect drive must double the yield amplification
to access the burning-plasma regime.
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The onset of the burning-plasma regime can be identified through experimental 
observables related to the yield amplification from a heating

*O. A. Hurricane et al., Nature 506, 343 (2014).
**R. Nora et al., Phys. Plasmas 21, 056316 (2014).

Summary/Conclusions
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• The fundamental parameter characterizing burning plasmas is heating workPdVQ a=a

• Current high-foot (HF)* implosions at the National Ignition Facility (NIF) have achieved 
. .toQ 0 5 0 6hs .a  with a yield amplification, caused by a heating, of about 2.3# at 1.9-MJ laser energy

• For a high-foot-like* target, the onset of the burning-plasma regime in the hot spot Q 1hs =a^ h 
requires ~50 kJ of fusion energy

• Hydro-equivalent** extrapolations of direct-drive OMEGA implosions to 1.9-MJ symmetric 
illumination indicate performance similar to indirect drive with a yield amplification of about 2#  
and over 100 kJ of fusion energy


