Effects of Long- and Intermediate-Wavelength Asymmetries on Hot-Spot Energetics

A. Bose
University of Rochester
Laboratory for Laser Energetics

57th Annual Meeting of the American Physical Society
Division of Plasma Physics
Savannah, GA
16–20 November 2015
Summary

Low- and intermediate-mode nonuniformities exhibit different degradation mechanisms of inertial confinement fusion (ICF) implosion performance

• Low-mode ($\ell \sim 2$) asymmetries result in a drop of hot-spot pressure and the burn volume is larger, while intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller volume

• Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes

• Extrapolation of the OMEGA implosion with the highest Lawson parameter to a 1.9-MJ symmetric direct drive leads to 125 kJ of fusion yield
Collaborators

R. Betti, E. M. Campbell, K. M. Woo, and A. R. Christopherson
University of Rochester
Laboratory for Laser Energetics

D. Shvarts
University of Michigan
The effect of hydro instabilities is investigated by rewriting the yield-over-clean (YOC) in terms of the hot-spot properties

- Yield: \(Y = \int dt \int dV \frac{n^2 \langle \sigma v \rangle}{4} \sim P^2 \frac{\langle \sigma v \rangle}{T^2} V \tau \)

- Fusion reactivity in \(2 < T < 7 \) keV: \(\langle \sigma v \rangle \sim T^{3.7} \)

- Burn volume: \(V = \int dt \int dV \frac{n^2 \langle \sigma v \rangle^{0.5}}{4} \approx V_{17}^{\text{ray}} \)

\[
YOC = \frac{Y}{Y_{1-D}} \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
The radiation–hydrodynamic code *DEC2D* is used to simulate the deceleration phase of implosions.

- Hydrodynamic profiles at the end of the acceleration phase (from the 1-D code *LILAC**) are used as the starting point, followed by a simulation of the deceleration phase in multidimension.
- *Single- or multimode velocity perturbations are introduced to the inner surface of the shell.*

In-flight target

\[R \sim 90 \mu m \]

\[V_{imp} \sim 380 \text{ km/s} \]

\[YOC \]

\[\Delta V\% \text{ of } V_{imp} \]

\[\ell = 2 \quad \text{and} \quad \ell = 10 \]

* K. M. Woo et al., GO5.00003, this conference;

Intermediate-ℓ modes exhibit degradation in burn volume, whereas low-ℓ modes show an increase.

OMEGA target at time of peak neutron rate

Fuel shape

- $YOC = 1.0$
- $YOC = 0.6$, $\ell = 2$
- $YOC = 0.6$, $\ell = 10$

Hot-spot shape

- $YOC = 1.0$
- $YOC = 0.6$, $\ell = 2$
- $YOC = 0.6$, $\ell = 10$

Equation

\[
YOC \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
Yield degradation from low-\(\ell\) modes results from a significant reduction in pressure compared to the 1-D values.
Ion temperatures and burnwidths are little affected by nonuniformities

\[
\text{YOC} \approx \left(\frac{P}{P_{1-D}} \right)^2 \left(\frac{V}{V_{1-D}} \right) \left(\frac{T}{T_{1-D}} \right)^{1.7} \left(\frac{\tau}{\tau_{1-D}} \right)
\]
Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>1-D simulation</th>
<th>2-D simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>$5.3 \times 10^{13} (\pm 10%)$</td>
<td>1.7×10^{14}</td>
<td>5.3×10^{13}</td>
</tr>
<tr>
<td>P^* (Gbar)</td>
<td>56 (± 7)</td>
<td>97</td>
<td>57</td>
</tr>
<tr>
<td>T_1 (keV)</td>
<td>3.6 (± 0.3)</td>
<td>3.82</td>
<td>3.7</td>
</tr>
<tr>
<td>R_{hs} (μm)</td>
<td>22 (± 1)</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>τ (ps)</td>
<td>66 (± 10)</td>
<td>61</td>
<td>54</td>
</tr>
<tr>
<td>ρR (g/cm²)</td>
<td>0.196 (± 0.018)</td>
<td>0.211</td>
<td>0.194</td>
</tr>
</tbody>
</table>

Combination of $\ell = 2$ with 5% ΔV and 2% ΔV for $\ell < 20$ with $22 < \ell^{-2} < 100$ spectrum $V_{imp} = 380 \, \mu$m/ns

TC12628

Extrapolating OMEGA results to hydro-equivalent targets driven by 1.9-MJ symmetric illumination leads to 125 kJ of fusion yield

Shot 77068

<table>
<thead>
<tr>
<th>OMEGA 26.18 kJ</th>
<th>1.9 MJ without α heating</th>
<th>1.9 MJ with α heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>5.3×10^{13}</td>
<td>2.25×10^{16}</td>
</tr>
<tr>
<td>P^* (Gbar)</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>T_i (keV)</td>
<td>3.7</td>
<td>4.7</td>
</tr>
<tr>
<td>R_{hs} (μm)</td>
<td>22</td>
<td>92.3</td>
</tr>
<tr>
<td>τ (ps)</td>
<td>54</td>
<td>215</td>
</tr>
<tr>
<td>ρR (g/cm2)</td>
<td>0.194</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Scale up

α heating

Y amplification = 2

ρR (g/cm2)

ρR (g/cm2)
Summary/Conclusions

Low- and intermediate-mode nonuniformities exhibit different degradation mechanisms of inertial confinement fusion (ICF) implosion performance.

- Low-mode ($\ell \sim 2$) asymmetries result in a drop of hot-spot pressure and the burn volume is larger, while intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller volume.
- Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes.
- Extrapolation of the OMEGA implosion with the highest Lawson parameter to a 1.9-MJ symmetric direct drive leads to 125 kJ of fusion yield.