Effects of Long- and Intermediate-Wavelength Asymmetries on Hot-Spot Energetics

57th Annual Meeting of the American Physical Society Division of Plasma Physics Savannah, GA 16-20 November 2015

Summarv

Low- and intermediate-mode nonuniformities exhibit different degradation mechanisms of inertial confinement fusion (ICF) implosion performance FSC

- Low-mode ($\ell \sim 2$) asymmetries result in a drop of hot-spot pressure and the burn volume is larger, while intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller volume
- Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes
- Extrapolation of the OMEGA implosion with the highest Lawson parameter to a 1.9-MJ symmetric direct drive leads to 125 kJ of fusion yield

TC12186a

R. Betti, E. M. Campbell, K. M. Woo, and A. R. Christopherson University of Rochester Laboratory for Laser Energetics

D. Shvarts University of Michigan

The effect of hydro instabilities is investigated by rewriting the yield-over-clean (YOC) in terms of the hot-spot properties FSC

• Yield:
$$\mathbf{Y} = \int \mathbf{d}t \int \mathbf{d}V \, \frac{\mathbf{n^2} \langle \mathbf{\sigma} \mathbf{v} \rangle}{4} \sim \mathbf{P^2} \, \frac{\langle \mathbf{\sigma} \mathbf{v} \rangle}{\mathbf{T^2}} \, \mathbf{V}\tau$$

• Fusion reactivity in 2 < 7 < 7 keV: $\langle \sigma v \rangle \sim T^{3.7}$

• Burn volume:
$$V = \frac{\int dt \left(\int dV \left\{ \frac{n^2 \langle \sigma v \rangle}{4} \right\}^{0.5} \right)^2}{V} \approx V_{17}^{x ray}$$

$$\mathbf{YOC} = \frac{\mathbf{Y}}{\mathbf{Y}_{1-\mathbf{D}}} \simeq \left(\frac{\mathbf{P}}{\mathbf{P}_{1-\mathbf{D}}}\right)^2 \left(\frac{\mathbf{V}}{\mathbf{V}_{1-\mathbf{D}}}\right) \left(\frac{\mathbf{T}}{\mathbf{T}_{1-\mathbf{D}}}\right)^{1.7} \left(\frac{\mathbf{T}}{\mathbf{T}_{1-\mathbf{D}}}\right)$$

The radiation–hydrodynamic code DEC2D* is used to simulate the deceleration phase of implosions

- Hydrodynamic profiles at the end of the acceleration phase (from the 1-D code *LILAC***) are used as the starting point, followed by a simulation of the deceleration phase in multidimension
- Single- or multimode velocity perturbations are introduced to the inner surface of the shell

V_{imp} ~ 380 km/s

TC12203a

FSC

In-flight target

^{*} K. M. Woo et al., GO5.00003, this conference; K. Anderson, R. Betti, and T. A. Gardiner, Bull. Am. Phys. Soc. 46, 280 (2001); A. Bose et al., Phys. Plasmas 22, 072702 (2015). ** J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

Intermediate- ℓ modes exhibit degradation in burn volume, whereas low- ℓ modes show an increase

TC12191a ROCHESTER

Yield degradation from low- ℓ modes results from a significant reduction in pressure compared to the 1-D values FSC

TC12192a

Ion temperatures and burnwidths are little affected by nonuniformities FSC

$$YOC \simeq \left(\frac{P}{P_{1-D}}\right)^2 \left(\frac{V}{V_{1-D}}\right) \left(\frac{T}{T_{1-D}}\right)^{1.7} \left(\frac{T}{T_{1-D}}\right)$$

Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes FSC

OMEGA shot 77068

<i>E</i> _L 26.18 kJ	Experiment	1-D simulation	2-D simulation
Yield	5.3 \times 10 ¹³ (±10%)	1.7 × 10 ¹⁴	5.3 × 10 ¹³
P* (Gbar)	56 (± 7)	97	57
T _i (keV)	3.6 (± 0.3)	3.82	3.7
R _{hs} (µm)	22 (±1)	22	22
au (ps)	66 (±10)	61	54
hoR (g/cm ²)	0.196 (±0.018)	0.211	0.194

z (*m*m)

Combination of $\ell = 2$ with 5% ΔV and 2% ΔV for ℓ < 20 with 22 < ℓ^{-2} < 100 spectrum $V_{\rm imp} = 380 \ \mu m/ns$

*C. Cerjan, P. T. Springer, and S. M. Sepke, Phys. Plasmas 20, 056319 (2013).

Extrapolating OMEGA results to hydro-equivalent targets driven by 1.9-MJ symmetric illumination leads to 125 kJ of fusion yield FSC

*R. Nora *et al.*, Phys. Plasmas <u>21</u>, 056316 (2014); A. Bose *et al.*, Phys. Plasmas <u>22</u>, 072702 (2015). **R. Betti *et al.*, Phys. Rev. Lett. 114, 255003 (2015).

Summary/Conclusions

Low- and intermediate-mode nonuniformities exhibit different degradation mechanisms of inertial confinement fusion (ICF) implosion performance FSC

- Low-mode ($\ell \sim 2$) asymmetries result in a drop of hot-spot pressure and the burn volume is larger, while intermediate-mode ($\ell \sim 10$) asymmetries result in a smaller volume
- Measurable observables on OMEGA are reproduced by using a combination of low and intermediate modes
- Extrapolation of the OMEGA implosion with the highest Lawson parameter to a 1.9-MJ symmetric direct drive leads to 125 kJ of fusion yield

TC12186a

#